Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toronto researchers discover novel circulation in human eye, new glaucoma treatment target

07.10.2009
Researchers at the University of Toronto, St. Michael's Hospital and Sunnybrook Health Sciences Centre have discovered a previously unidentified form of circulation within the human eye which may provide important new insights into glaucoma, a leading cause of blindness.

For over a century, the eye has been considered to lack lymphatics, a circulation responsible for pumping fluid and waste out of tissues. The inability to clear that fluid from the eye is linked to glaucoma, a leading cause of irreversible blindness affecting over 66 million people worldwide.

"We challenged this assumption about a lack of lymphatics and discovered specialized lymphatic channels in the human eye," said Prof. Yeni Yücel, a pathologist-scientist in U of T's Faculty of Medicine and St. Michael's Hospital, and lead author of the study which appears in the current issue of Experimental Eye Research.

Glaucoma is a degenerative disease believed to be caused by the death of nerve cells at the back of the eye and in vision centers of the brain. It is often associated with elevated pressure in the eye. Current treatments for glaucoma rely on eye drops or surgery to lower eye pressure either by reducing fluid formation or improving fluid drainage from the eye.

"Good vision depends on the stable flow of fluid into and out of the eye. Any disturbance of this delicate fluid balance can lead to high eye pressure and irreversible glaucoma damage," said study co-author Dr. Neeru Gupta, Director of the Glaucoma Unit and Nerve Protection Unit at St. Michael's Hospital and Professor of Ophthalmology at U of T.

The lymphatic circulation, distinct from blood circulation, carries a colorless fluid called, lymph containing extra water, proteins and antigens through lymphatic vessels to lymph nodes and then to the blood stream. This circulation is critical for the drainage of the fluid from tissues, clearance of proteins and immune monitoring of the tissue.

Using molecular tools and three-dimensional reconstruction, the team of researchers identified a rich network of lymphatic channels in the ciliary body of the human eye. These studies were confirmed by electron microscopy.

The discovery of a lymphatic circulation in the eye overthrows the idea that the eye is an immune privileged site due to the lack of lymphatics and has major implications for understanding eye inflammations and eye tumor spread, among other eye disorders.

"This 'uveolymphatic' circulation plays a role in the clearance of fluid from the eye, making it highly relevant to glaucoma. This discovery is exciting because it means we can focus on innovative treatment strategies for patients with glaucoma by specifically targeting this new circulation to lower eye pressure," said Dr. Gupta.

According to the researchers, future studies will be directed at better understanding how to manipulate the lymphatic circulation in the eye. "It's clear that if we want to develop new strategies to prevent blindness, we need to challenge existing beliefs, and hopefully open the door to new treatments for eye disease," said Prof. Yücel, who also serves as Director of the Ophthalmic Pathology Laboratory in U of T's Department of Ophthalmology and research Scientist at the Keenan Research Center at Li Ka Shing Knowledge Institute, SMH.

Glaucoma is expected to affect 80 million people worldwide by 2020. Although the disease can affect anybody, those with elevated eye pressure, the elderly, blacks and persons with a family member with glaucoma are at greatest risk. Other risk factors that may be associated with glaucoma include diabetes, high blood pressure and near-sightedness.

This study was a collaboration between the University of Toronto and two fully-affiliated hospitals: St. Michael's Hospital and Sunnybrook Health Sciences Centre. Other co-authors include Miles G. Johnston, Professor Laboratory Medicine and Pathobiology and scientist at Neuroscience Program, Sunnybrook Hospital, Tina Ly, Manoj Patel, Ersin Gümüº, Stephan A. Fraenkl and Eva Horvath from SMH, and Brian Drake, Sara Moore, Dalia Tobbia, Dianne Armstrong from Sunnybrook Hospital Research Institute. This research was supported by this work was supported by the Canadian Institutes of Health Research (85053), Nicky And Thor Eaton Fund, The Dorothy Pitts Fund, and Henry Farrugia Fund.

For more information:
Chris Garbutt,
Senior Communications Officer
University of Toronto Faculty of Medicine
Chris.garbutt@utoronto.ca
416-946-8423

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>