Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tobacco smoking impacts teens' brains

03.03.2011
Less activity found in prefrontal cortex, the 'executive center' of brain
Tobacco smoking is the leading preventable cause of death and disease in the U.S., with more than 400,000 deaths each year attributable to smoking or its consequences. And yet teens still smoke. Indeed, smoking usually begins in the teen years, and approximately 80 percent of adult smokers became hooked by the time they were 18. Meanwhile, teens who don't take up smoking usually never do.

While studies have linked cigarette smoking to deficits in attention and memory in adults, UCLA researchers wanted to compare brain function in adolescent smokers and non-smokers, with a focus on the prefrontal cortex, the area of the brain that guides "executive functions" like decision-making and that is still developing structurally and functionally in adolescents.

They found a disturbing correlation: The greater a teen's addiction to nicotine, the less active the prefrontal cortex was, suggesting that smoking can affect brain function.

The research appears in the current online edition of the journal Neuropsychopharmacology.

The finding is obviously not good news for smokers, said the study's senior author, Edythe London, a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA.

"As the prefrontal cortex continues to develop during the critical period of adolescence, smoking may influence the trajectory of brain development and affect the function of the prefrontal cortex," London said.

In the study, 25 smokers and 25 non-smokers between the ages of 15 to 21 were asked to perform a test that activated the prefrontal cortex and required them to inhibit responding.

The test, called the Stop-Signal Task (SST), was done while the participants were undergoing functional magnetic resonance imaging (fMRI). The Stop-Signal Task involves pressing a button as quickly as possible every time a lighted arrow appears — unless an auditory tone is played, in which case the participant must prevent himself from pressing the button. It is a test of a person's ability to inhibit an action.

Prior to the fMRI test, the researchers used the Heaviness of Smoking Index (HSI) to measure the level of nicotine dependence in the smoking group. The HSI takes into account how many cigarettes a teen smokes in a day and how soon after waking he or she takes the first smoke.

The results of the tests, London said, were interesting — and surprising. Among smokers, the researchers found that the higher the HSI — that is, the more a teen smoked — the lesser the activity in the prefrontal cortex. And yet, despite these lower levels of activation, the smoking group and the non-smoking group performed roughly the same with respect to inhibition on the Stop-Signal Task.

"The finding that there was little difference on the Stop-Signal Task between smokers and non-smokers was a surprise," said London, who is also a professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA and a member of the UCLA Brain Research Institute. "That suggested to us that the motor response of smokers may be maintained through some kind of compensation from other brain areas."

Protracted development of the prefrontal cortex has been implicated as a cause of poor decision-making in teens, London said, caused by immature cognitive control during adolescence.

"Such an effect can influence the ability of youth to make rational decisions regarding their well-being, and that includes the decision to stop smoking," she said.

The key finding, London noted, is that "as the prefrontal cortex continues to develop during the critical period of adolescence, smoking may influence the trajectory of brain development, affecting the function of the prefrontal cortex. In turn, if the prefrontal cortex is negatively impacted, a teen may be more likely to start smoking and to keep smoking — instead of making the decision that would favor a healthier life."

On the other hand, the fact that adolescent smokers and non-smokers performed equally well during a response-inhibition test suggests that early interventions during the teen years may prevent the transition from a teen smoking an occasional cigarette in response to peer pressure to addiction in later adolescence.

In addition to London, study authors included lead author Adriana Galván, Christine M. Baker and Kristine M. McGlennen of UCLA, and Russell A. Poldrack, of the University of Texas at Austin.

Funding for this study was provided by Philip Morris USA, an endowment from the Thomas P. and Katherine K. Pike Chair in Addiction Studies, and a gift from the Marjorie M Greene Trust. None of the sponsors had any involvement in the design, collection, analysis or interpretation of data, the writing the manuscript, or the decision to submit the manuscript for publication.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, the institute faculty seeks to develop effective strategies for prevention and treatment of neurological, psychiatric and behavioral disorder, including improvement in access to mental health services and the shaping of national health policy.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>