Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Therapy for Childhood Neuroblastoma Proves Feasible and Safe

30.06.2011
A new treatment option may soon be available for children with neuroblastoma according to research published in the July issue of The Journal of Nuclear Medicine.

The study tested the principle that combined positron emission tomography and X-ray computed tomography (PET/CT) may be used to select children with primary refractory or relapsed high-risk neuroblastoma for treatment with a molecular radiotherapy known as 177Lu-DOTATATE. This therapeutic option was found to be viable option for children with neuroblastomas.

Neuroblastoma is a cancerous tumor that develops from nerve tissue in infants and children. Accounting for six to 10 percent of all childhood cancers, it does not always follow the same pattern, with some patients regressing spontaneously and other progressing, despite aggressive therapy. The long-term survival rate for neuroblastoma is below 40 percent.

“We know that peptide receptor radionuclide therapy in adults with somatostatin-positive neuroendocrine tumors has resulted in improved symptoms, prolonged survival and an enhanced quality of life. Since some neuroblastomas express somatostatin receptors, we felt this approach could be beneficial to children as well,” said Jamshed B. Bomanji, MBBS, PhD, FRCR, FRCP, one of the authors of the study “177Lu-DOTATATE Molecular Radiotherapy for Childhood Neuroblastoma.”

In the study, eight children with relapsed or primary refractory neuroblastoma were imaged with a 68Ga-DOTATATE PET/CT scan. If the disease sites showed 68Ga-DOTATATE uptake greater than the liver, the child was considered eligible for the molecular radiotherapy. Therapy with 177Lu-DOTATATE was determined to be suitable for six of the children and was administered appropriately.

After completing treatment with 177Lu-DOTATATE, five children had stable disease by the response evaluation criteria in solid tumors. The treatment was feasible, practical and well-tolerated in the small group of patients with high-risk neuroblastoma. As a result, the researchers plan to evaluate 177Lu-DOTATATE formally in a phase I-II clinical trial to evaluate toxicity and response.

“Molecular imaging has contributed a new diagnostic technique to map the full extent of disease. This mode of treatment has great potential for children whose treatment options are limited, as neuroblastoma often becomes resistant to chemotherapy and success is limited by poor bone marrow reserve,” noted Bomanji.

Authors of the article “177Lu-DOTATATE Molecular Radiotherapy for Childhood Neuroblastoma” include: Jennifer E. Gains, Naomi L. Fersht, Kevin P. Sullivan and Mark N. Graze, Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Jamshed B. Bomanji, Matthew Aldridge and Wendy Waddington, Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom; and Tracy Sullivan and Derek D’Souza, Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom.

Please visit the SNM Newsroom to view the PDF of the study, including images. To schedule an interview with the researchers, please contact Susan Martonik at (703) 652-6773 or smartonik@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM—Advancing Molecular Imaging and Therapy
SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today’s medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM’s more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Susan Martonik | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>