Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The burning issue of hydrocarbons: Impacts on human health

09.05.2014

Highlights of Prof. Hayakawa's research who is currently developing methods to identify metabolites of PAHs and NPAHs in urine and blood. Other work include developing the most sensitive method for measuring PAHs and NPAHs, showing that motorcycle engines released more particulate matter than automobiles and more

A leading professor has spent his considerable career at Kanazawa University in Japan investigating the toxic by-products of burning fuels, and the associated impacts on human health. 


Toxic (nitro)polycyclic aromatic hydrocarbons (PAHs/NPAHs), the by-products from burning fuels such as diesel, are now known to have a significant impact on human health. Current understanding of the nature and effects of these molecules has been greatly enhanced by the work of Kazuichi Hayakawa at Kanazawa University, Japan.

Polycyclic aromatic hydrocarbons (PAHs) and their related molecules, nitropolycyclic aromatic hydrocarbons (NPAHs), are released when fuel – either fossil fuels or biomass – is burnt. They are also present following tobacco and fat combustion. PAHs and NPAHs are known to be highly carcinogenic and mutagenic, meaning they can trigger genetic mutations in living organisms. The impact of these particular molecules on human health is now being uncovered, thanks in no small part to the work of Kazuichi Hayakawa at Kanazawa University. The research is featured in the May issue of the Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Hayakawa is highly regarded for his development of an extremely sensitive method of determining NPAH / PAH concentrations in atmospheric particulate samples. His technique uses high performance liquid chromatography with chemiluminescence detection – separating out the chemical components of particulate matter and classifying them according to how they emit light and heat (1).

“In the 1970s, there was no analytical method for monitoring trace levels of atmospheric NPAHs, even though the toxicity of NPAHs was very strong,” explains Hayakawa. “My analytical method for determining both PAH and NPAH levels, developed over 20 years ago, remains the most sensitive technique to date.”

Hayakawa discovered that the NPAH/PAH concentration ratio in any given sample is dependent upon the original combustion temperature of the fuel. In this way, airborne particulate samples can be analyzed and the original source of the pollutants can be identified – for example burning coal, diesel or petrol. 

Between 1997 and 2002, Hayakawa led a study of airborne particulates in seven cities across East Asia2. The research revealed that, due to the higher combustion temperature, diesel engine vehicles in Japan released far more PAHs/NPAHs into the atmosphere than coal heating systems, which were predominant in China.

In 2013, novel research published by Hayakawa and his team illustrates that motorcycle engines release more particulate matter and higher levels of PAHs than automobile engines (3). The same paper shows that motorcycle particulates hold stronger PAH-related mutagenicity than emissions from other vehicles. 

As well as studying atmospheric PAHs/NPAHs over recent decades, Hayakawa has been involved in numerous investigations into the effects of these molecules on human health. His team found that NPAHs originating from diesel fuels were implicated in the development of cancerous tissues in the body (4).

Furthermore, in research published in 2003, they uncovered the role of diesel fuel PAHs in disrupting the testosterone and estrogen effects in men and women, respectively, a condition which can lead to prostate cancer and genetic reproductive disorders5.

“I am currently developing methods to identify metabolites of PAHs and NPAHs in biological samples such as urine and blood,” describes Hayakawa. “These methods will determine the risk of exposure to PAHs and NPAHs.”

Kazuichi Hayakawa’s research will continue to provide insight into environmental pollution across the globe. It will also inform the development of countermeasures that should help to reduce human health risks.

Further information:
Organization of Frontier Science and Innovation, Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp

Website: http://www.o-fsi.kanazawa-u.ac.jp/en  


About Kanazawa University

Kanazawa University, Japan publishes the May 2014 issue of its online newsletter, Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Kanazawa University Research Bulletin highlights the latest research from one of Japan's leading comprehensive universities with its three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.


Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links

Journal information

1. K. Hayakawa et al. Determination of 1,3-, 1,6- and 1,8- dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid chromatography using chemiluminescence detection. Environmental Science and Technology 29 (4) (1995)
2. N. Tang et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan sea countries. Atmospheric Environment 39 (2005)
3. C.T. Pham et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution 183 (2013)
4. M. Iwanari et al. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch Toxicology 76 (2002)
5. R. Kizu et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicology 77 (2003)


Kanazawa University
*corresponding author, e-mail address: hayakawa@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research SEA News
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

Further reports about: Frontier Impacts Kanazawa PAH PAHs Polycyclic aromatic combustion fuels hydrocarbons levels

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>