Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The burning issue of hydrocarbons: Impacts on human health


Highlights of Prof. Hayakawa's research who is currently developing methods to identify metabolites of PAHs and NPAHs in urine and blood. Other work include developing the most sensitive method for measuring PAHs and NPAHs, showing that motorcycle engines released more particulate matter than automobiles and more

A leading professor has spent his considerable career at Kanazawa University in Japan investigating the toxic by-products of burning fuels, and the associated impacts on human health. 

Toxic (nitro)polycyclic aromatic hydrocarbons (PAHs/NPAHs), the by-products from burning fuels such as diesel, are now known to have a significant impact on human health. Current understanding of the nature and effects of these molecules has been greatly enhanced by the work of Kazuichi Hayakawa at Kanazawa University, Japan.

Polycyclic aromatic hydrocarbons (PAHs) and their related molecules, nitropolycyclic aromatic hydrocarbons (NPAHs), are released when fuel – either fossil fuels or biomass – is burnt. They are also present following tobacco and fat combustion. PAHs and NPAHs are known to be highly carcinogenic and mutagenic, meaning they can trigger genetic mutations in living organisms. The impact of these particular molecules on human health is now being uncovered, thanks in no small part to the work of Kazuichi Hayakawa at Kanazawa University. The research is featured in the May issue of the Kanazawa University Research Bulletin:

Hayakawa is highly regarded for his development of an extremely sensitive method of determining NPAH / PAH concentrations in atmospheric particulate samples. His technique uses high performance liquid chromatography with chemiluminescence detection – separating out the chemical components of particulate matter and classifying them according to how they emit light and heat (1).

“In the 1970s, there was no analytical method for monitoring trace levels of atmospheric NPAHs, even though the toxicity of NPAHs was very strong,” explains Hayakawa. “My analytical method for determining both PAH and NPAH levels, developed over 20 years ago, remains the most sensitive technique to date.”

Hayakawa discovered that the NPAH/PAH concentration ratio in any given sample is dependent upon the original combustion temperature of the fuel. In this way, airborne particulate samples can be analyzed and the original source of the pollutants can be identified – for example burning coal, diesel or petrol. 

Between 1997 and 2002, Hayakawa led a study of airborne particulates in seven cities across East Asia2. The research revealed that, due to the higher combustion temperature, diesel engine vehicles in Japan released far more PAHs/NPAHs into the atmosphere than coal heating systems, which were predominant in China.

In 2013, novel research published by Hayakawa and his team illustrates that motorcycle engines release more particulate matter and higher levels of PAHs than automobile engines (3). The same paper shows that motorcycle particulates hold stronger PAH-related mutagenicity than emissions from other vehicles. 

As well as studying atmospheric PAHs/NPAHs over recent decades, Hayakawa has been involved in numerous investigations into the effects of these molecules on human health. His team found that NPAHs originating from diesel fuels were implicated in the development of cancerous tissues in the body (4).

Furthermore, in research published in 2003, they uncovered the role of diesel fuel PAHs in disrupting the testosterone and estrogen effects in men and women, respectively, a condition which can lead to prostate cancer and genetic reproductive disorders5.

“I am currently developing methods to identify metabolites of PAHs and NPAHs in biological samples such as urine and blood,” describes Hayakawa. “These methods will determine the risk of exposure to PAHs and NPAHs.”

Kazuichi Hayakawa’s research will continue to provide insight into environmental pollution across the globe. It will also inform the development of countermeasures that should help to reduce human health risks.

Further information:
Organization of Frontier Science and Innovation, Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan


About Kanazawa University

Kanazawa University, Japan publishes the May 2014 issue of its online newsletter, Kanazawa University Research Bulletin:

Kanazawa University Research Bulletin highlights the latest research from one of Japan's leading comprehensive universities with its three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.

Kanazawa University website:

Associated links

Journal information

1. K. Hayakawa et al. Determination of 1,3-, 1,6- and 1,8- dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid chromatography using chemiluminescence detection. Environmental Science and Technology 29 (4) (1995)
2. N. Tang et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan sea countries. Atmospheric Environment 39 (2005)
3. C.T. Pham et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution 183 (2013)
4. M. Iwanari et al. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch Toxicology 76 (2002)
5. R. Kizu et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicology 77 (2003)

Kanazawa University
*corresponding author, e-mail address:

Adarsh Sandhu | Research SEA News
Further information:

Further reports about: Frontier Impacts Kanazawa PAH PAHs Polycyclic aromatic combustion fuels hydrocarbons levels

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>