Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The burning issue of hydrocarbons: Impacts on human health

09.05.2014

Highlights of Prof. Hayakawa's research who is currently developing methods to identify metabolites of PAHs and NPAHs in urine and blood. Other work include developing the most sensitive method for measuring PAHs and NPAHs, showing that motorcycle engines released more particulate matter than automobiles and more

A leading professor has spent his considerable career at Kanazawa University in Japan investigating the toxic by-products of burning fuels, and the associated impacts on human health. 


Toxic (nitro)polycyclic aromatic hydrocarbons (PAHs/NPAHs), the by-products from burning fuels such as diesel, are now known to have a significant impact on human health. Current understanding of the nature and effects of these molecules has been greatly enhanced by the work of Kazuichi Hayakawa at Kanazawa University, Japan.

Polycyclic aromatic hydrocarbons (PAHs) and their related molecules, nitropolycyclic aromatic hydrocarbons (NPAHs), are released when fuel – either fossil fuels or biomass – is burnt. They are also present following tobacco and fat combustion. PAHs and NPAHs are known to be highly carcinogenic and mutagenic, meaning they can trigger genetic mutations in living organisms. The impact of these particular molecules on human health is now being uncovered, thanks in no small part to the work of Kazuichi Hayakawa at Kanazawa University. The research is featured in the May issue of the Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Hayakawa is highly regarded for his development of an extremely sensitive method of determining NPAH / PAH concentrations in atmospheric particulate samples. His technique uses high performance liquid chromatography with chemiluminescence detection – separating out the chemical components of particulate matter and classifying them according to how they emit light and heat (1).

“In the 1970s, there was no analytical method for monitoring trace levels of atmospheric NPAHs, even though the toxicity of NPAHs was very strong,” explains Hayakawa. “My analytical method for determining both PAH and NPAH levels, developed over 20 years ago, remains the most sensitive technique to date.”

Hayakawa discovered that the NPAH/PAH concentration ratio in any given sample is dependent upon the original combustion temperature of the fuel. In this way, airborne particulate samples can be analyzed and the original source of the pollutants can be identified – for example burning coal, diesel or petrol. 

Between 1997 and 2002, Hayakawa led a study of airborne particulates in seven cities across East Asia2. The research revealed that, due to the higher combustion temperature, diesel engine vehicles in Japan released far more PAHs/NPAHs into the atmosphere than coal heating systems, which were predominant in China.

In 2013, novel research published by Hayakawa and his team illustrates that motorcycle engines release more particulate matter and higher levels of PAHs than automobile engines (3). The same paper shows that motorcycle particulates hold stronger PAH-related mutagenicity than emissions from other vehicles. 

As well as studying atmospheric PAHs/NPAHs over recent decades, Hayakawa has been involved in numerous investigations into the effects of these molecules on human health. His team found that NPAHs originating from diesel fuels were implicated in the development of cancerous tissues in the body (4).

Furthermore, in research published in 2003, they uncovered the role of diesel fuel PAHs in disrupting the testosterone and estrogen effects in men and women, respectively, a condition which can lead to prostate cancer and genetic reproductive disorders5.

“I am currently developing methods to identify metabolites of PAHs and NPAHs in biological samples such as urine and blood,” describes Hayakawa. “These methods will determine the risk of exposure to PAHs and NPAHs.”

Kazuichi Hayakawa’s research will continue to provide insight into environmental pollution across the globe. It will also inform the development of countermeasures that should help to reduce human health risks.

Further information:
Organization of Frontier Science and Innovation, Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp

Website: http://www.o-fsi.kanazawa-u.ac.jp/en  


About Kanazawa University

Kanazawa University, Japan publishes the May 2014 issue of its online newsletter, Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Kanazawa University Research Bulletin highlights the latest research from one of Japan's leading comprehensive universities with its three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.


Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links

Journal information

1. K. Hayakawa et al. Determination of 1,3-, 1,6- and 1,8- dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid chromatography using chemiluminescence detection. Environmental Science and Technology 29 (4) (1995)
2. N. Tang et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan sea countries. Atmospheric Environment 39 (2005)
3. C.T. Pham et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution 183 (2013)
4. M. Iwanari et al. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch Toxicology 76 (2002)
5. R. Kizu et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicology 77 (2003)


Kanazawa University
*corresponding author, e-mail address: hayakawa@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research SEA News
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

Further reports about: Frontier Impacts Kanazawa PAH PAHs Polycyclic aromatic combustion fuels hydrocarbons levels

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>