Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The burning issue of hydrocarbons: Impacts on human health

09.05.2014

Highlights of Prof. Hayakawa's research who is currently developing methods to identify metabolites of PAHs and NPAHs in urine and blood. Other work include developing the most sensitive method for measuring PAHs and NPAHs, showing that motorcycle engines released more particulate matter than automobiles and more

A leading professor has spent his considerable career at Kanazawa University in Japan investigating the toxic by-products of burning fuels, and the associated impacts on human health. 


Toxic (nitro)polycyclic aromatic hydrocarbons (PAHs/NPAHs), the by-products from burning fuels such as diesel, are now known to have a significant impact on human health. Current understanding of the nature and effects of these molecules has been greatly enhanced by the work of Kazuichi Hayakawa at Kanazawa University, Japan.

Polycyclic aromatic hydrocarbons (PAHs) and their related molecules, nitropolycyclic aromatic hydrocarbons (NPAHs), are released when fuel – either fossil fuels or biomass – is burnt. They are also present following tobacco and fat combustion. PAHs and NPAHs are known to be highly carcinogenic and mutagenic, meaning they can trigger genetic mutations in living organisms. The impact of these particular molecules on human health is now being uncovered, thanks in no small part to the work of Kazuichi Hayakawa at Kanazawa University. The research is featured in the May issue of the Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Hayakawa is highly regarded for his development of an extremely sensitive method of determining NPAH / PAH concentrations in atmospheric particulate samples. His technique uses high performance liquid chromatography with chemiluminescence detection – separating out the chemical components of particulate matter and classifying them according to how they emit light and heat (1).

“In the 1970s, there was no analytical method for monitoring trace levels of atmospheric NPAHs, even though the toxicity of NPAHs was very strong,” explains Hayakawa. “My analytical method for determining both PAH and NPAH levels, developed over 20 years ago, remains the most sensitive technique to date.”

Hayakawa discovered that the NPAH/PAH concentration ratio in any given sample is dependent upon the original combustion temperature of the fuel. In this way, airborne particulate samples can be analyzed and the original source of the pollutants can be identified – for example burning coal, diesel or petrol. 

Between 1997 and 2002, Hayakawa led a study of airborne particulates in seven cities across East Asia2. The research revealed that, due to the higher combustion temperature, diesel engine vehicles in Japan released far more PAHs/NPAHs into the atmosphere than coal heating systems, which were predominant in China.

In 2013, novel research published by Hayakawa and his team illustrates that motorcycle engines release more particulate matter and higher levels of PAHs than automobile engines (3). The same paper shows that motorcycle particulates hold stronger PAH-related mutagenicity than emissions from other vehicles. 

As well as studying atmospheric PAHs/NPAHs over recent decades, Hayakawa has been involved in numerous investigations into the effects of these molecules on human health. His team found that NPAHs originating from diesel fuels were implicated in the development of cancerous tissues in the body (4).

Furthermore, in research published in 2003, they uncovered the role of diesel fuel PAHs in disrupting the testosterone and estrogen effects in men and women, respectively, a condition which can lead to prostate cancer and genetic reproductive disorders5.

“I am currently developing methods to identify metabolites of PAHs and NPAHs in biological samples such as urine and blood,” describes Hayakawa. “These methods will determine the risk of exposure to PAHs and NPAHs.”

Kazuichi Hayakawa’s research will continue to provide insight into environmental pollution across the globe. It will also inform the development of countermeasures that should help to reduce human health risks.

Further information:
Organization of Frontier Science and Innovation, Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp

Website: http://www.o-fsi.kanazawa-u.ac.jp/en  


About Kanazawa University

Kanazawa University, Japan publishes the May 2014 issue of its online newsletter, Kanazawa University Research Bulletin: http://www.kanazawa-u.ac.jp/research_bulletin/index.html

Kanazawa University Research Bulletin highlights the latest research from one of Japan's leading comprehensive universities with its three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.


The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.


Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links

Journal information

1. K. Hayakawa et al. Determination of 1,3-, 1,6- and 1,8- dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid chromatography using chemiluminescence detection. Environmental Science and Technology 29 (4) (1995)
2. N. Tang et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan sea countries. Atmospheric Environment 39 (2005)
3. C.T. Pham et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environmental Pollution 183 (2013)
4. M. Iwanari et al. Induction of CYP1A1, CYP1A2, and CYP1B1 mRNAs by nitropolycyclic aromatic hydrocarbons in various human tissue-derived cells: chemical-, cytochrome P450 isoform-, and cell-specific differences. Arch Toxicology 76 (2002)
5. R. Kizu et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicology 77 (2003)


Kanazawa University
*corresponding author, e-mail address: hayakawa@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research SEA News
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

Further reports about: Frontier Impacts Kanazawa PAH PAHs Polycyclic aromatic combustion fuels hydrocarbons levels

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>