Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting innate immunity in malaria

05.08.2011
Novel DNA sensing pathway linked to increased susceptibility to malaria

Scientists at the University of Massachusetts Medical School have uncovered a novel DNA-sensing pathway important to the triggering of an innate immune response for malaria.

Activation of this pathway appears to stimulate production of an overabundance of type-1 interferon by the immune system that may contribute to inflammation and fever in malaria patients and could play a part in susceptibility for the most common and lethal form of malaria known as plasmodium falciparum. Published online by Immunity this week, the study offers the first evidence that recognition of parasite DNA by the innate immune system may play a key role in malaria.

Caused by a parasite transmitted through mosquitoes, malaria is often characterized by successive waves of high fevers, which contribute to the lethalness of the disease and cause many of its complications. The disease initially incubates in liver cells where it can gestate and multiple for up to 30 days. In the second stage, the parasite infects blood cells where it continues to multiply. Invisible to the immune system while inside the blood cells, the malaria parasite periodically bursts through to infect new cells and further multiply. Once the malaria parasite is outside of the blood cells, the immune system is able to detect its presence and attempts to mount a defensive response. It is this response and the corresponding inflammation that accounts for the periodic and deadly waves of fever experienced by malaria patients.

"Traditionally, immunologists have investigated how the adaptive immune system responds to foreign bodies such as virus, bacteria and parasites. It's only over the last 10 to 15 years that we've begun to understand the complex and important role the innate immune system plays in responding to all different classes of pathogens," said Katherine A. Fitzgerald, PhD, associate professor of medicine at UMMS and one of the lead authors of the Immunity study. "In this study, we set out to understand what role the innate immune system plays in this fever response, the dominate symptom found in malaria patients."

Looking at blood samples from febrile malaria patients, Fitzgerald and colleagues found the typical genetic signs expected from patients infected by a pathogen. What they weren't expecting to find, however, were elevated levels of interferon-expressing genes. Typically produced when a virus is detected, interferon triggers the protective defenses of the immune system that can eradicate viruses or tumors. "What we saw when we looked at the samples from malaria patients was a type 1 interferon signature in the immune cells that were responding to the malaria," said Fitzgerald. "This surprised us at the time because traditionally we thought of interferon only in the context of virus infections"

Working with Douglas T. Golenbock, MD, chief of the Division of Infectious Diseases and Immunology at UMMS, Dr. Fitzgerald and colleagues set out to find what was triggering the innate immune response and what effect that response was having on the host cells. What they found was a part of the malaria genome containing a dense portion of the nucleic acids adenine and thymine, two of the building blocks in DNA, which were responsible for activating a novel signaling pathway, including STING, TBK1 and IRF3-IRF7, in the host that enabled innate immune cells to produce type 1 interferon.

When Fitzgerald and colleagues proceeded to test the importance of this pathway to the progression of the disease in small animal models they found another surprise. Those which expressed the normal STING, TBK1 and IRF3-IRF7 pathway all succumbed to the infection within 12 days. However, those that lacked some or all of these genes survived the infection, suggesting that this novel DNA-sensing pathway that leads to type 1 interferon production may play a vital role in the progression of malaria in the host.

"Normally interferon works to eradicate viruses from our body," said Fitzgerald. "In malaria it appears that the interferon response produced by the innate immune system might actually be harmful to the host rather than beneficial. It's not clear yet how or why this occurs but these findings suggest that immune system recognition of DNA and the corresponding production of interferon may play an important role in the parasite's pathogenesis."

Fitzgerald also theorizes that these finding will have broader implications for other infectious and autoimmune diseases. It's possible that with other infectious agents dense portions of the nucleic acids adenine and thymine might also alert the innate immune response to the presence of infection. Additionally, some forms of autoimmunity are associated with overproduction of interferon and it's possible that pathways like those defined here in the context of malaria may be involved in exacerbating these diseases. "More work needs to be done to fully understand these issues" she said.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School (UMMS), one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. UMMS attracts more than $255 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of UMMS is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>