Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Target for Maintaining Healthy Blood Pressure Discovered by Penn Scientists

28.04.2009
In trying to understand the role of prostaglandins – a family of fatty compounds key to the cardiovascular system – in blood pressure maintenance, researchers at the University of Pennsylvania School of Medicine and colleagues discovered that mice that lack the receptor for one type of prostaglandin have lower blood pressure and less atherosclerosis than their non-mutant brethren.

The results indicate that the normal role for the type of prostaglandin studied, PGF2á, is to increase blood pressure and accelerate atherosclerosis, at least in rodents, and suggest that targeting this pathway could represent a novel therapeutic approach to cardiovascular disease.

The results appeared this week in the Proceedings of the National Academy of Sciences.

“Blocking this prostaglandin receptor may provide a strategy for controlling blood pressure and its attendant vascular disease,” notes senior author Garret A. FitzGerald, MD, Director of the Institute for Translational Medicine and Therapeutics at Penn.

To address prostaglandins’ role in maintaining blood pressure, FitzGerald and his team, including researchers from the University of Southern Denmark, created strains of mice in which both the maternal and paternal copies of the gene for the PGF2á receptor were deleted. They did this in mice with a normal genetic background and in ones that contained an additional mutation in the low-density lipoprotein receptor gene. These manipulations effectively rendered the mice unable to respond to the prostaglandins.

The delicate balance the body maintains to keep blood pressure stable involves not only the prostaglandin system, but another biological pathway, the renin-angiotensin-aldosterone system, or RAAS. Under conditions of low blood pressure, the liver secretes a protein called angiotensiogen. Renin, an enzyme produced by the kidneys, cleaves angiotensiogen into a peptide called angiotensin I. Angiotensin I is cleaved again to form angiotensin II, which stimulates blood vessels to narrow, thereby increasing blood pressure. At the same time, angiotensin II induces the release of the hormone aldosterone, which further elevates blood pressure by promoting retention of water and sodium in the kidneys.

Many conventional therapies for high blood pressure target components of the RAAS pathway. For instance, ACE inhibitors such as captopril (Capoten) target the formation of angiotensin II, while aliskiren (Tekturna) targets renin.

The team assessed the impact of the PGF2á receptor mutations on both blood pressure and RAAS activity. They found that under a variety of circumstances deletion of the PGF2á receptor lowered blood pressure coincident with suppression of RAAS activity.

“Precisely how these two observations are connected is the focus of our current research,” says FitzGerald.

Blood pressure was reduced in both types of genetically engineered mice relative to control littermates. The RAAS molecules renin, angiotensin I, and aldosterone were also reduced, a biological situation leading to lower blood pressure.

The team found that the PGF2á receptor is expressed in the smooth muscle surrounding arteries in the kidneys. However, it was absent in the muscle surrounding the aorta, in the atherosclerotic lesions of mice with their PGF2á receptors knocked out, as well as in the macrophages that inhabit those lesions. Importantly, these atherosclerotic lesions were smaller and less abundant in mice that had both the low-density lipoprotein and PGF2á receptors knocked out, as was macrophage infiltration and inflammatory cytokine production, both of which are indicators of the inflammatory response that marks these plaques.

Prostaglandins are produced during the oxidation of certain cell molecules by cyclooxygenases, the COX enzymes targeted by COX inhibitors, but how remains unclear. FitzGerald’s group had previously shown that blockading cyclooxygenase 1 and its major prostaglandin product, thromboxane, also lowers blood pressure, slowing atherosclerosis, but in this previous study, the relevant genes are present in the aorta and its atherosclerotic lesions. PGF2á, by contrast, acts via the kidney and represents a distinct therapeutic opportunity.

“The picture is emerging that PGF2á controls blood pressure by a mechanism unique among the prostaglandins,” says FitzGerald. “Besides the case of thromboxane, two other types of prostaglandins, PGI2 and PGE2, stimulate renin secretion, which is part of the RAAS pathway.”

Assuming these findings can be translated to humans, targeting the PGF2á pathway could represent a novel opportunity for therapeutic control of blood pressure in cardiovascular patients.

The research was funded by the National Heart, Lung, and Blood Institute and the American Heart Association.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to the National Institutes of Health, received over $366 million in NIH grants (excluding contracts) in the 2008 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>