Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target discovered for treatment of cancer

12.01.2010
Researchers at the Swedish medical university Karolinska Institutet have discovered a new way of blocking the formation of blood vessels and halting the growth of tumours in mice. A substance that exploits this mechanism could be developed into a new treatment for cancer.

For a cancer tumour to be able to grow larger than the size of a pea, the cancer cells need to stimulate the formation of new blood vessels that can supply the tumour with oxygen and nutrients, a process known as angiogenesis. A number of medicines which inhibit angiogenesis have been developed, but their effect has been limited, and there is still a major need for better medicines.

The new results concern a receptor on the surface of blood vessel cells called ALK1. When the researchers blocked ALK1 in tumours in mice, angiogenesis was inhibited and the tumours stopped growing. The ALK1 receptor is activated by a family of signalling proteins called TGF-ß proteins that are very important for communication between different types of cell in a wide range of key processes in the body. The study indicates that two members of the TGF-ß family (TGF-ß and BMP9) work together to stimulate angiogenesis in tumours.

ALK1 was blocked partly by genetic means and partly using a pharmaceutical substance called RAP-041.

"We believe that RAP-041 could be used in combination with existing angiogenesis inhibitors to achieve the maximum effect," says associate professor Kristian Pietras, who led the study.

Clinical studies of ACE-041, the human equivalent of RAP-041, have already been begun in the USA by the company that holds the patent on the substance. One goal of these studies is to find out which types of tumour are most sensitive to ALK1 blockade.

Publication: 'Genetic and Pharmacological Targeting of Activin Receptor-like Kinase 1 Impairs Tumor Growth and Angiogenesis', Sara Cunha, Evangelia Pardali, Midory Thorikay, Charlotte Anderberg, Lukas Hawinkels, Marie-José Goumans, Jasbir Seehra, Carl-Henrik Heldin, Peterten Dijke, Kristian Pietras, The Journal of Experimental Medicine, online 11 January 2010.

For more information, please contact:

Kristian Pietras, Associate Professor of tumour biology
Department of Medical Biochemistry and Biophysics
Mobile: +46 70 920 9709
Email: Kristian.Pietras@ki.se
Sara Cunha, Postgraduate Student
Department of Medical Biochemistry and Biophysics
Mobile: +46 73 672 5575
Email: Sara.Cunha@ki.se
Katarina Sternudd, Press Officer
Tel: +46 8 524 838 95
Email: Katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research and education, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine. For more information, visit ki.se.

Katarina Sternudd | idw
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>