Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target discovered for treatment of cancer

12.01.2010
Researchers at the Swedish medical university Karolinska Institutet have discovered a new way of blocking the formation of blood vessels and halting the growth of tumours in mice. A substance that exploits this mechanism could be developed into a new treatment for cancer.

For a cancer tumour to be able to grow larger than the size of a pea, the cancer cells need to stimulate the formation of new blood vessels that can supply the tumour with oxygen and nutrients, a process known as angiogenesis. A number of medicines which inhibit angiogenesis have been developed, but their effect has been limited, and there is still a major need for better medicines.

The new results concern a receptor on the surface of blood vessel cells called ALK1. When the researchers blocked ALK1 in tumours in mice, angiogenesis was inhibited and the tumours stopped growing. The ALK1 receptor is activated by a family of signalling proteins called TGF-ß proteins that are very important for communication between different types of cell in a wide range of key processes in the body. The study indicates that two members of the TGF-ß family (TGF-ß and BMP9) work together to stimulate angiogenesis in tumours.

ALK1 was blocked partly by genetic means and partly using a pharmaceutical substance called RAP-041.

"We believe that RAP-041 could be used in combination with existing angiogenesis inhibitors to achieve the maximum effect," says associate professor Kristian Pietras, who led the study.

Clinical studies of ACE-041, the human equivalent of RAP-041, have already been begun in the USA by the company that holds the patent on the substance. One goal of these studies is to find out which types of tumour are most sensitive to ALK1 blockade.

Publication: 'Genetic and Pharmacological Targeting of Activin Receptor-like Kinase 1 Impairs Tumor Growth and Angiogenesis', Sara Cunha, Evangelia Pardali, Midory Thorikay, Charlotte Anderberg, Lukas Hawinkels, Marie-José Goumans, Jasbir Seehra, Carl-Henrik Heldin, Peterten Dijke, Kristian Pietras, The Journal of Experimental Medicine, online 11 January 2010.

For more information, please contact:

Kristian Pietras, Associate Professor of tumour biology
Department of Medical Biochemistry and Biophysics
Mobile: +46 70 920 9709
Email: Kristian.Pietras@ki.se
Sara Cunha, Postgraduate Student
Department of Medical Biochemistry and Biophysics
Mobile: +46 73 672 5575
Email: Sara.Cunha@ki.se
Katarina Sternudd, Press Officer
Tel: +46 8 524 838 95
Email: Katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research and education, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine. For more information, visit ki.se.

Katarina Sternudd | idw
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>