Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen ameliorates symptoms of Duchenne muscular dystrophy

15.01.2013
Results of new study published in the American Journal of Pathology

A new study has found that tamoxifen, a well-known breast cancer drug, can counteract some pathologic features in a mouse model of Duchenne muscular dystrophy (DMD).

At present, no treatment is known to produce long-term improvement of the symptoms in boys with DMD, a debilitating muscular disorder that is characterized by progressive muscle wasting, respiratory and cardiac impairments, paralysis, and premature death. This study will be published in the February 2013 issue of The American Journal of Pathology.

Using the mdx5Cv mouse model of DMD, investigators found that tamoxifen, given orally for more than a year, "caused remarkable improvements of muscle force and of diaphragm and cardiac structure," according to lead author Olivier M. Dorchies, PhD, of the Department of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences of the University of Geneva and University of Lausanne. For instance, in the heart, fibrosis was diminished by approximately 50%. In the diaphragm, the muscle of the dystrophic mouse thought to be most like that of human DMD, tamoxifen reduced fibrosis while increasing thickness as well as the number and average diameter of muscle fibers. The net effect was that tamoxifen raised the amount of contractile tissue available for respiration by 72%.

Patients with DMD show muscle degeneration, and their muscle fibers become abnormally susceptible to stress. In this animal study, tamoxifen improved the structure of leg muscles, slowed muscle contraction, increased overall muscle function, and made leg muscles more resistant to repetitive stimulation and fatigue. In fact, tamoxifen rendered dystrophic muscles even stronger than those of non-dystrophic control mice. "Our findings of a slower rate of contraction and an enhanced resistance to fatigue in muscles from tamoxifen-treated dystrophic mice are of significance for the pathophysiology of muscular dystrophy," say the authors.

A wire test revealed that treating male mdx5Cv mice with tamoxifen for more than a year increased the whole body strength 2- to 3-fold, close to that of normal mice.

Additional findings shed light on the mechanism of tamoxifen's therapeutic actions. For example, plasma creatine kinase (CK) activity was found to be about 3 times higher in the dystrophic male mice than in the non-dystrophic males, and tamoxifen treatment normalized the CK levels of the dystrophic mice. The authors suggest that this effect is mediated by an estrogen receptor (ER) dependent mechanism. The study also reported for the first time that mouse dystrophic muscle is high in both ER á and â, and that tamoxifen raises levels of ERâ2 in particular.

Other findings, such as increased levels of calcineurin and accumulation of several structural proteins, indicate a protective effect of tamoxifen on dystrophic muscles. The authors point out that the beneficial effects of tamoxifen were seen with muscle tissue levels much lower than those reported in previous studies of normal rodents, suggesting that doses lower than those used to treat breast cancer may be effective in the treatment of DMD.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>