Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tachycardia: Genetic Cause Discovered

31.07.2013
Ventricular fibrillation, loss of consciousness and death in seemingly healthy people: These are the characteristics of the so-called Brugada syndrome. In the search for the causes of this disease, an international team of scientists has now discovered a surprising fact.

A gene known to be essential in the formation of the interventricular septum and of the cardiac valves can be responsible for the development of the Brugada syndrome.

This is the main result of a study recently published in the journal Nature Genetics by the research group of Amsterdam cardiologist Connie R. Bezzina. The study also involved scientists at the Biocenter of the University of Würzburg: Professor Manfred Gessler, head of the Department for Developmental Biochemistry, and his team have been studying the respective gene, the Hey2 gene, for a long time.

Gessler and his associates identified the Hey2 gene more than ten years ago. In their studies, they were also able to show in an animal model that the gene plays a significant role in the formation of the interventricular septum and of the cardiac valves. "However, the fact that the gene is involved in the electrical activity of the cardiac muscle and conduction cells has not been shown before," says Gessler.

The Brugada syndrome

The Brugada syndrome has been recognized for only just about 20 years as a distinct genetic arrhythmia of the heart. It was first described in 1991 by two brothers, Josep and Pedro Brugada. Patients suffering from this disease are affected by an abnormal electrical conduction in the heart associated with a high risk of sudden cardiac death. They are subject to recurrent cardiac arrhythmias, which can lead to loss of consciousness. In the worst case, ventricular fibrillation occurs when the ventricles of the heart contract so rapidly that they cease to pump the blood effectively, which results in cardiovascular failure.

"Previously, it was known that about 20 percent of the patients have defects in the sodium ion channel of the cardiac cells, predominantly in the subunit encoded by the SNC5A gene. However, the causes of the disease remained unclear in the majority of cases," says Manfred Gessler.

The study

In the search for further risk factors, the study group of Connie R. Bezzina first conducted genome-wide association studies, involving more than 1000 patients. As expected, they found that the disease is correlated with certain genetic variants of the SCN5A gene and of the related SCN10A gene, which both have a function in cardiac excitation propagation. The scientists confirmed this finding in further patient cohorts.

To the researchers’ surprise, however, the first analysis also revealed statistically significant data indicating that genetic variations near the HEY2 gene play a role in the development of the Brugada syndrome. These results were confirmed in additional patient cohorts as well.

Defects in the Hey2 gene identified

In a joint project with the Amsterdam study group, the Würzburg researchers then achieved a major breakthrough: "With the help of special optical methods, we were able to establish that mice lacking one of the two copies of the Hey2 gene also exhibit detectable changes to the ventricular excitation propagation and the subsequent repolarization of the cardiac muscle cells comparable to those of the Brugada syndrome," Gessler explains. Hence, the HEY2 gene, previously only linked to developmental defects of the heart, also seems to have an impact on the correct formation of the cardiac conduction system and the electrical excitability of the cardiac muscle cells.

Further studies are already in progress in order to shed more light on the molecular mechanisms of this defect.

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death; Connie R Bezzina et al. Nature Genetics, published online 21 July 2013; doi:10.1038/ng.2712

Contact person

Prof. Dr. Manfred Gessler, T: +49 (0)931 31-84159,
email: gessler@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>