Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tachycardia: Genetic Cause Discovered

31.07.2013
Ventricular fibrillation, loss of consciousness and death in seemingly healthy people: These are the characteristics of the so-called Brugada syndrome. In the search for the causes of this disease, an international team of scientists has now discovered a surprising fact.

A gene known to be essential in the formation of the interventricular septum and of the cardiac valves can be responsible for the development of the Brugada syndrome.

This is the main result of a study recently published in the journal Nature Genetics by the research group of Amsterdam cardiologist Connie R. Bezzina. The study also involved scientists at the Biocenter of the University of Würzburg: Professor Manfred Gessler, head of the Department for Developmental Biochemistry, and his team have been studying the respective gene, the Hey2 gene, for a long time.

Gessler and his associates identified the Hey2 gene more than ten years ago. In their studies, they were also able to show in an animal model that the gene plays a significant role in the formation of the interventricular septum and of the cardiac valves. "However, the fact that the gene is involved in the electrical activity of the cardiac muscle and conduction cells has not been shown before," says Gessler.

The Brugada syndrome

The Brugada syndrome has been recognized for only just about 20 years as a distinct genetic arrhythmia of the heart. It was first described in 1991 by two brothers, Josep and Pedro Brugada. Patients suffering from this disease are affected by an abnormal electrical conduction in the heart associated with a high risk of sudden cardiac death. They are subject to recurrent cardiac arrhythmias, which can lead to loss of consciousness. In the worst case, ventricular fibrillation occurs when the ventricles of the heart contract so rapidly that they cease to pump the blood effectively, which results in cardiovascular failure.

"Previously, it was known that about 20 percent of the patients have defects in the sodium ion channel of the cardiac cells, predominantly in the subunit encoded by the SNC5A gene. However, the causes of the disease remained unclear in the majority of cases," says Manfred Gessler.

The study

In the search for further risk factors, the study group of Connie R. Bezzina first conducted genome-wide association studies, involving more than 1000 patients. As expected, they found that the disease is correlated with certain genetic variants of the SCN5A gene and of the related SCN10A gene, which both have a function in cardiac excitation propagation. The scientists confirmed this finding in further patient cohorts.

To the researchers’ surprise, however, the first analysis also revealed statistically significant data indicating that genetic variations near the HEY2 gene play a role in the development of the Brugada syndrome. These results were confirmed in additional patient cohorts as well.

Defects in the Hey2 gene identified

In a joint project with the Amsterdam study group, the Würzburg researchers then achieved a major breakthrough: "With the help of special optical methods, we were able to establish that mice lacking one of the two copies of the Hey2 gene also exhibit detectable changes to the ventricular excitation propagation and the subsequent repolarization of the cardiac muscle cells comparable to those of the Brugada syndrome," Gessler explains. Hence, the HEY2 gene, previously only linked to developmental defects of the heart, also seems to have an impact on the correct formation of the cardiac conduction system and the electrical excitability of the cardiac muscle cells.

Further studies are already in progress in order to shed more light on the molecular mechanisms of this defect.

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death; Connie R Bezzina et al. Nature Genetics, published online 21 July 2013; doi:10.1038/ng.2712

Contact person

Prof. Dr. Manfred Gessler, T: +49 (0)931 31-84159,
email: gessler@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>