Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight induced DNA Crash

30.08.2013
Summer, sun and the sea – a dream vacation for most - can turn sour for those affected by lupus erythematosus. For them, absorption of the UV-light component in sunlight may cause florid inflammation and redness of the skin.

Scientists of the University Hospital Bonn, Germany have now discovered which signaling pathway of the innate immune system promotes autoimmune symptoms following sun-induced DNA damage. The results are now published online in the academic journal Immunity.


Sunlight can damage DNA: Dr. Winfried Barchet (centre), and his co-workers at the Institute of Clinical Chemistry and Clinical Pharmacology visualize their findings using black tubing to represent the DNA double helix. Nadine Gehrke (on the far left), Christina Mertens (far right) and Thomas Zillinger (fourth from the right) share first authorship on the publication.
(c) Photo: Anna-Maria Herzner/UKB

Lupus erythematosus (LE) is an autoimmune disorder in which the immune system erroneously attacks the body’s own tissues. Where most people merely suffer sunburn, LE prone patients may develop severe redness and inflammation in sun-exposed skin. Immunologists of the University Hospital Bonn together with the Dermatologists Profs. Thomas Tüting and Jörg Wenzel have now discovered an immune mechanism that triggers LE skin lesions.

„We have shown how the UV component of sunlight may cause DNA damage in cells, and in consequence lead to an alarm response from the innate immune system“, reports Dr. Winfried Barchet, head of the Emmy Noether-research team „Immunorecognition of viral nucleic acids in the cytosol“ at the Institute of Clinical Chemistry and Clinical Pharmacology at the university clinics of Bonn.

How DNA damage produces a false alarm

High-energy UV irradiation damages DNA in the nuclei of living cells that in consequence perish, and release the UV-altered DNA. In lupus patients this triggers a troublesome signaling cascade: „The innate immune system usually detects viruses via their nucleic acids. Here however, this state of emergency is declared erroneously due to the crash in the body’s own DNA,“ says Dr. Barchet. The majority of the innate immune receptors that detect viral nucleic acids and in consequence activate inflammatory immune defense mechanisms are now known.

„For the induction of lupus symptoms, according to our data, the decisive role is played by the very recently discovered immune receptor cGAMP-Synthase (cGAS)“, says Dr. Barchet. DNA released from dying cells is taken up by immune cells and then degraded by the enzyme TREX1. When the cellular DNA is UV damaged, however, TREX1 is ineffective according to the results of the Bonn researchers. Damaged DNA accumulates and activates the cGAS signaling pathway, thus ringing a false alarm for the immune system

The researchers were also able to support this concept with a mouse model in which a gene defect makes them prone to develop lupus-like autoimmune disease. When the immunologists injected DNA damaged by UV-light into the skin, the animals locally developed typical lupus symptoms: skin swelling and inflammation, infiltration of immune cells that eventually attacked skin tissue. Control injections of intact DNA, in contrast, did not cause such skin alterations.

„These signaling events may explain why lupus patients are prone to UV-light induced skin lesions“, says the researcher. This study is the first to implicate the cGAS receptor in this autoimmune disorder. Dr. Barchet envisions potential targets for novel lupus therapies: „With a suitable inhibitor of the cGAS signaling cascade, it may become possible to suppress sunlight induced symptoms of the disease. On the other hand, it is puzzling why the immune system has evolved and maintained such a potentially harmful mechanism. We believe that in healthy individuals it must have an important function in the defense against pathogens that we would very much like to understand as well,“ says Dr. Barchet.

Dr. Barchet is a member of the ImmunoSensation cluster of excellence (Speaker: Prof. Dr. Gunther Hartmann) of the University of Bonn that is funded for 5 years with a total of 30 million Euro.

Publication: „Oxidative Damage of DNA Confers Resistance to Cytosolic Nuclease TREX1 Degradation and Potentiates STING-Dependent Immune Sensing”, Fachjournal „Immunity“

Contact:

Dr. rer. nat. Winfried Barchet
Leiter der Emmy-Noether-Gruppe „Immunerkennung viraler Nukleinsäuren im Zytosol“
Institut für Klinische Chemie und Klinische Pharmakologie
Tel. 0228/28751146
E-Mail: Winfried.Barchet@ukb.uni-bonn.de
Weitere Informationen:
http://dx.doi.org/10.1016/j.immuni.2013.08.004
Publication

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://dx.doi.org/10.1016/j.immuni.2013.08.004

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>