Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight induced DNA Crash

30.08.2013
Summer, sun and the sea – a dream vacation for most - can turn sour for those affected by lupus erythematosus. For them, absorption of the UV-light component in sunlight may cause florid inflammation and redness of the skin.

Scientists of the University Hospital Bonn, Germany have now discovered which signaling pathway of the innate immune system promotes autoimmune symptoms following sun-induced DNA damage. The results are now published online in the academic journal Immunity.


Sunlight can damage DNA: Dr. Winfried Barchet (centre), and his co-workers at the Institute of Clinical Chemistry and Clinical Pharmacology visualize their findings using black tubing to represent the DNA double helix. Nadine Gehrke (on the far left), Christina Mertens (far right) and Thomas Zillinger (fourth from the right) share first authorship on the publication.
(c) Photo: Anna-Maria Herzner/UKB

Lupus erythematosus (LE) is an autoimmune disorder in which the immune system erroneously attacks the body’s own tissues. Where most people merely suffer sunburn, LE prone patients may develop severe redness and inflammation in sun-exposed skin. Immunologists of the University Hospital Bonn together with the Dermatologists Profs. Thomas Tüting and Jörg Wenzel have now discovered an immune mechanism that triggers LE skin lesions.

„We have shown how the UV component of sunlight may cause DNA damage in cells, and in consequence lead to an alarm response from the innate immune system“, reports Dr. Winfried Barchet, head of the Emmy Noether-research team „Immunorecognition of viral nucleic acids in the cytosol“ at the Institute of Clinical Chemistry and Clinical Pharmacology at the university clinics of Bonn.

How DNA damage produces a false alarm

High-energy UV irradiation damages DNA in the nuclei of living cells that in consequence perish, and release the UV-altered DNA. In lupus patients this triggers a troublesome signaling cascade: „The innate immune system usually detects viruses via their nucleic acids. Here however, this state of emergency is declared erroneously due to the crash in the body’s own DNA,“ says Dr. Barchet. The majority of the innate immune receptors that detect viral nucleic acids and in consequence activate inflammatory immune defense mechanisms are now known.

„For the induction of lupus symptoms, according to our data, the decisive role is played by the very recently discovered immune receptor cGAMP-Synthase (cGAS)“, says Dr. Barchet. DNA released from dying cells is taken up by immune cells and then degraded by the enzyme TREX1. When the cellular DNA is UV damaged, however, TREX1 is ineffective according to the results of the Bonn researchers. Damaged DNA accumulates and activates the cGAS signaling pathway, thus ringing a false alarm for the immune system

The researchers were also able to support this concept with a mouse model in which a gene defect makes them prone to develop lupus-like autoimmune disease. When the immunologists injected DNA damaged by UV-light into the skin, the animals locally developed typical lupus symptoms: skin swelling and inflammation, infiltration of immune cells that eventually attacked skin tissue. Control injections of intact DNA, in contrast, did not cause such skin alterations.

„These signaling events may explain why lupus patients are prone to UV-light induced skin lesions“, says the researcher. This study is the first to implicate the cGAS receptor in this autoimmune disorder. Dr. Barchet envisions potential targets for novel lupus therapies: „With a suitable inhibitor of the cGAS signaling cascade, it may become possible to suppress sunlight induced symptoms of the disease. On the other hand, it is puzzling why the immune system has evolved and maintained such a potentially harmful mechanism. We believe that in healthy individuals it must have an important function in the defense against pathogens that we would very much like to understand as well,“ says Dr. Barchet.

Dr. Barchet is a member of the ImmunoSensation cluster of excellence (Speaker: Prof. Dr. Gunther Hartmann) of the University of Bonn that is funded for 5 years with a total of 30 million Euro.

Publication: „Oxidative Damage of DNA Confers Resistance to Cytosolic Nuclease TREX1 Degradation and Potentiates STING-Dependent Immune Sensing”, Fachjournal „Immunity“

Contact:

Dr. rer. nat. Winfried Barchet
Leiter der Emmy-Noether-Gruppe „Immunerkennung viraler Nukleinsäuren im Zytosol“
Institut für Klinische Chemie und Klinische Pharmakologie
Tel. 0228/28751146
E-Mail: Winfried.Barchet@ukb.uni-bonn.de
Weitere Informationen:
http://dx.doi.org/10.1016/j.immuni.2013.08.004
Publication

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de
http://dx.doi.org/10.1016/j.immuni.2013.08.004

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>