Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some aggressive cancers may respond to anti-inflammatory drugs

30.06.2014

New research raises the prospect that some cancer patients with aggressive tumors may benefit from a class of anti-inflammatory drugs used to treat rheumatoid arthritis.

Studying triple-negative breast cancer, researchers at Washington University School of Medicine in St. Louis found that some aggressive tumors rely on an antiviral pathway that appears to drive inflammation, widely recognized for roles in cancer, rheumatoid arthritis and other inflammatory diseases.


Raleigh Kladney

A mouse mammary gland missing the tumor suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis.

The tumors that activate this particular antiviral pathway always have dysfunctional forms of the proteins p53 and ARF, both encoded by genes known for being highly mutated in various cancers. The investigators found that the two genes compensate for each other. If both are mutated, the tumors that form are more aggressive than if only one of these genes is lost.

When both genes are lost and the antiviral pathway is activated, patients may benefit from a class of anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis.

The investigators report their findings in a recent issue of the journal Cell Reports.

Until now, even though ARF was known to be expressed in some tumors with mutated p53, ARF largely was thought to be nonfunctional in this scenario. But the investigators showed that in the absence of p53, ARF actually protects against even more aggressive tumor formation.

“It’s probably inaccurate to say that ARF completely replaces p53, which is a robust tumor suppressor with multiple ways of working,” said senior author Jason D. Weber, PhD, associate professor of medicine. “But it appears the cell has set up a sort of backup system with ARF. It’s not surprising that these are the two most highly mutated tumor suppressors in cancer. Because they’re backing one another up, the most aggressive tumors form when you lose both.”

Weber and his colleagues studied triple-negative breast cancer because these tumors often show mutations in both p53 and ARF. Triple-negative breast tumors are treated with surgery, chemotherapy and radiation since targeted therapies commonly used against hormone-driven breast cancers are not effective.

In a finding Weber called surprising, the researchers showed that most triple-negative tumors lacking p53 and ARF turn on a pathway involved in the innate immune response to viral infection.

“It’s not the level of activation you would see in a true antiviral response, but it’s higher than normal,” Weber said. “We are interested in studying whether this antiviral response is creating a local environment of inflammation that supports more aggressive tumors.”

Weber and his colleagues knew that a signaling protein family known as JAK is upstream of the antiviral pathway they showed to be driving tumor growth.

“There are JAK inhibitors in use for rheumatoid arthritis and being tested against a number of other conditions,” Weber said. “Our data suggest that these anti-inflammatory drugs may be a way to treat some patients missing both p53 and ARF.”

The drugs potentially could benefit patients in whom both genes are lost, Weber added. If either p53 or ARF is present, this antiviral pathway is not active and therefore not playing a role in driving tumor growth.

Weber and his team are collaborating with specialists in lung, breast and pancreatic cancer to identify patients with mutations in both genes and to find out whether such patients might benefit from JAK inhibitors.

This work was supported by the National Institutes of Health (NIH), the National Cancer Institute (NCI) of the NIH, a Clinical and Translational Science Award (CTSA) from the NIH and a Department of Defense Era of Hope Scholar grant. Grant numbers R01CA120436, 1K12CA167540, UL1RR024992, and 5T32GM007067.

Forys JT, Kuzmicki CE, Saporita AJ, Winkeler CL, Maggi Jr. LB, Weber JD. ARF and p53 coordinate tumor suppression of an oncogenic IFN-beta-STAT1-ISG15 signaling axis. Cell Reports. April 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Eurek Alert!
Further information:
https://news.wustl.edu/news/Pages/27051.aspx

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>