Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Some aggressive cancers may respond to anti-inflammatory drugs


New research raises the prospect that some cancer patients with aggressive tumors may benefit from a class of anti-inflammatory drugs used to treat rheumatoid arthritis.

Studying triple-negative breast cancer, researchers at Washington University School of Medicine in St. Louis found that some aggressive tumors rely on an antiviral pathway that appears to drive inflammation, widely recognized for roles in cancer, rheumatoid arthritis and other inflammatory diseases.

Raleigh Kladney

A mouse mammary gland missing the tumor suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis.

The tumors that activate this particular antiviral pathway always have dysfunctional forms of the proteins p53 and ARF, both encoded by genes known for being highly mutated in various cancers. The investigators found that the two genes compensate for each other. If both are mutated, the tumors that form are more aggressive than if only one of these genes is lost.

When both genes are lost and the antiviral pathway is activated, patients may benefit from a class of anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis.

The investigators report their findings in a recent issue of the journal Cell Reports.

Until now, even though ARF was known to be expressed in some tumors with mutated p53, ARF largely was thought to be nonfunctional in this scenario. But the investigators showed that in the absence of p53, ARF actually protects against even more aggressive tumor formation.

“It’s probably inaccurate to say that ARF completely replaces p53, which is a robust tumor suppressor with multiple ways of working,” said senior author Jason D. Weber, PhD, associate professor of medicine. “But it appears the cell has set up a sort of backup system with ARF. It’s not surprising that these are the two most highly mutated tumor suppressors in cancer. Because they’re backing one another up, the most aggressive tumors form when you lose both.”

Weber and his colleagues studied triple-negative breast cancer because these tumors often show mutations in both p53 and ARF. Triple-negative breast tumors are treated with surgery, chemotherapy and radiation since targeted therapies commonly used against hormone-driven breast cancers are not effective.

In a finding Weber called surprising, the researchers showed that most triple-negative tumors lacking p53 and ARF turn on a pathway involved in the innate immune response to viral infection.

“It’s not the level of activation you would see in a true antiviral response, but it’s higher than normal,” Weber said. “We are interested in studying whether this antiviral response is creating a local environment of inflammation that supports more aggressive tumors.”

Weber and his colleagues knew that a signaling protein family known as JAK is upstream of the antiviral pathway they showed to be driving tumor growth.

“There are JAK inhibitors in use for rheumatoid arthritis and being tested against a number of other conditions,” Weber said. “Our data suggest that these anti-inflammatory drugs may be a way to treat some patients missing both p53 and ARF.”

The drugs potentially could benefit patients in whom both genes are lost, Weber added. If either p53 or ARF is present, this antiviral pathway is not active and therefore not playing a role in driving tumor growth.

Weber and his team are collaborating with specialists in lung, breast and pancreatic cancer to identify patients with mutations in both genes and to find out whether such patients might benefit from JAK inhibitors.

This work was supported by the National Institutes of Health (NIH), the National Cancer Institute (NCI) of the NIH, a Clinical and Translational Science Award (CTSA) from the NIH and a Department of Defense Era of Hope Scholar grant. Grant numbers R01CA120436, 1K12CA167540, UL1RR024992, and 5T32GM007067.

Forys JT, Kuzmicki CE, Saporita AJ, Winkeler CL, Maggi Jr. LB, Weber JD. ARF and p53 coordinate tumor suppression of an oncogenic IFN-beta-STAT1-ISG15 signaling axis. Cell Reports. April 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Eurek Alert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>