Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sodium MRI gives new insights into detecting osteoarthritis

30.08.2010
Researchers at New York University have developed an innovative way to look at the development of osteoarthritis in the knee joint—one that relies on the examination of sodium ions in cartilage. Their work, which appears in the Journal of Magnetic Resonance, may provide a non-invasive method to diagnose osteoarthritis in its very early stages.

The concentration of sodium ions, which are distributed in the body, is known to reveal the location of glycosaminogycans (GAGs) in cartilage tissues. GAGs are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Mapping the GAG concentration is necessary for the diagnosis and monitoring of a number of diseases as well as to determine the efficacy of drug therapies. For instance, GAG loss in cartilage typically marks the onset of osteoarthritis and inter-vertebral disc degeneration.

However, the existing techniques for GAG monitoring—based on traditional magnetic resonance imaging (MRI)—have limitations: they cannot directly map GAG concentrations or they require the administration of contrast agents to reveal the location of these concentrations.

But since sodium ions are already present in cartilage, researchers have sought to measure these ions using special MRI techniques that are non-invasive.

Such a methodology was previously developed at the University of Pennsylvania and Stanford University. However, these methodologies were not able to isolate ions in different parts of the knee area. Specifically, they could not make clear-cut distinctions between signals of slow motion sodium ions in the cartilage from those of free sodium ions in synovial fluid and joint effusion in the knee joint.

The NYU research team sought to improve on this method by focusing on the differences in the properties of sodium ions in the two environments.

Since sodium is present not only in cartilage, MRI images often cannot tell whether the sodium concentration measured is located in cartilage or elsewhere in the knee joint. To better target where these sodium concentrations reside, the researchers focused on the differences in the magnetic behavior of sodium ions residing in different tissues. By exploiting these characteristic properties of sodium ions in different environments, the research team was able to develop a new method to isolate two pools of sodium ions. As a result, it was able to obtain images in which the sodium signals appear exclusively from regions with cartilage tissue.

This new sodium MRI method not only could provide a non-invasive way to diagnose osteoarthritis in its very early stages, but could also help to calibrate other, less direct measures of cartilage assessments.

The research was conducted by: Alexej Jerschow, an associate professor, and Jae-Seung Lee, a post-doctoral fellow, both in NYU's Department of Chemistry; Ravinder Regatte, an associate professor, and Guillaume Madelin, a post-doctoral fellow, both in the Radiology Department at NYU School of Medicine; and Souheil Inati, a former assistant professor at NYU's Center for Neural Science and currently a staff scientist at the National Institute of Mental Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Gag MRI MRI technique magnetic resonance imaging sodium

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>