Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sodium MRI gives new insights into detecting osteoarthritis

30.08.2010
Researchers at New York University have developed an innovative way to look at the development of osteoarthritis in the knee joint—one that relies on the examination of sodium ions in cartilage. Their work, which appears in the Journal of Magnetic Resonance, may provide a non-invasive method to diagnose osteoarthritis in its very early stages.

The concentration of sodium ions, which are distributed in the body, is known to reveal the location of glycosaminogycans (GAGs) in cartilage tissues. GAGs are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Mapping the GAG concentration is necessary for the diagnosis and monitoring of a number of diseases as well as to determine the efficacy of drug therapies. For instance, GAG loss in cartilage typically marks the onset of osteoarthritis and inter-vertebral disc degeneration.

However, the existing techniques for GAG monitoring—based on traditional magnetic resonance imaging (MRI)—have limitations: they cannot directly map GAG concentrations or they require the administration of contrast agents to reveal the location of these concentrations.

But since sodium ions are already present in cartilage, researchers have sought to measure these ions using special MRI techniques that are non-invasive.

Such a methodology was previously developed at the University of Pennsylvania and Stanford University. However, these methodologies were not able to isolate ions in different parts of the knee area. Specifically, they could not make clear-cut distinctions between signals of slow motion sodium ions in the cartilage from those of free sodium ions in synovial fluid and joint effusion in the knee joint.

The NYU research team sought to improve on this method by focusing on the differences in the properties of sodium ions in the two environments.

Since sodium is present not only in cartilage, MRI images often cannot tell whether the sodium concentration measured is located in cartilage or elsewhere in the knee joint. To better target where these sodium concentrations reside, the researchers focused on the differences in the magnetic behavior of sodium ions residing in different tissues. By exploiting these characteristic properties of sodium ions in different environments, the research team was able to develop a new method to isolate two pools of sodium ions. As a result, it was able to obtain images in which the sodium signals appear exclusively from regions with cartilage tissue.

This new sodium MRI method not only could provide a non-invasive way to diagnose osteoarthritis in its very early stages, but could also help to calibrate other, less direct measures of cartilage assessments.

The research was conducted by: Alexej Jerschow, an associate professor, and Jae-Seung Lee, a post-doctoral fellow, both in NYU's Department of Chemistry; Ravinder Regatte, an associate professor, and Guillaume Madelin, a post-doctoral fellow, both in the Radiology Department at NYU School of Medicine; and Souheil Inati, a former assistant professor at NYU's Center for Neural Science and currently a staff scientist at the National Institute of Mental Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Gag MRI MRI technique magnetic resonance imaging sodium

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>