Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute team identifies a potential cause of Parkinson's disease

20.11.2012
Deciphering what causes the brain cell degeneration of Parkinson’s disease has remained a perplexing challenge for scientists.
But a team led by scientists from The Scripps Research Institute (TSRI) has pinpointed a key factor controlling damage to brain cells in a mouse model of Parkinson’s disease. The discovery could lead to new targets for Parkinson’s that may be useful in preventing the actual condition.

The team, led by TSRI neuroscientist Bruno Conti, describes the work in a paper published online ahead of print on November 19, 2012 by the Journal of Immunology.
Parkinson’s disease plagues about one percent of people over 60 years old, as well as some younger patients. The disease is characterized by the loss of dopamine-producing neurons primarily in the substantia nigra pars compacta, a region of the brain regulating movements and coordination.

Among the known causes of Parkinson’s disease are several genes and some toxins. However, the majority of Parkinson’s disease cases remain of unknown origin, leading researchers to believe the disease may result from a combination of genetics and environmental factors.
Neuroinflammation and its mediators have recently been proposed to contribute to neuronal loss in Parkinson’s, but how these factors could preferentially damage dopaminergic neurons has remained unclear until now.

Making Connections

Conti and his team were looking for biological pathways that could connect the immune system’s inflammatory response to the damage seen in dopaminergic neurons. After searching human genomics databases, the team’s attention was caught by a gene encoding a protein known as interleukin-13 receptor alpha 1 chain (IL-13Ra1), as it is located in the PARK12 locus, which has been linked to Parkinson’s.
IL-13rá1 is a receptor chain mediating the action of interleukin 13 (IL-13) and interleukin 4 (IL-4), two cytokines investigated for their role as mediators of allergic reactions and for their anti-inflammatory action.

With further study, the researchers made the startling discovery that in the mouse brain, IL-13Ra1 is found only on the surface of dopaminergic neurons. “This was a ‘Wow!’ moment,” said Brad Morrison, then a TSRI postdoctoral fellow and now at University of California, San Diego, who was first author of the paper with Cecilia Marcondes, a neuroimmunologist at TSRI.

Conti agrees: “I thought that these were very interesting coincidences. So we set out to see if we could find any biological significance.”

The scientists did—but not in the way they were expecting.

‘Something New Going On’

The scientists set up long-term experiments using a mouse model in which chronic peripheral inflammation causes both neuroinflammation and loss of dopaminergic neurons similar to that seen in Parkinson’s disease. The team looked at mice having or lacking IL-13Ra1 and then compared the number of dopaminergic neurons in the brain region of interest.

The researchers expected that knocking out the IL-13 receptor would increase inflammation and cause neuronal loss to get even worse. Instead, neurons got better.

“We were very surprised at first,” said Conti. “When we stopped to think, we got very excited because we understood that there was something new going on.”

Given that cells fared better without the receptor, the team next explored whether damage occurred when dopaminergic neurons that express IL-13Rá1 were exposed to IL-13 or IL-4. But exposure to IL-13 or IL-4 alone did not induce damage.

However, when the scientists exposed the neurons to oxidative compounds, they found that both IL-13 and IL-4 greatly enhanced the cytotoxic effects of oxidative stress.

“This finally helps us understand a basic mechanism of the increased susceptibility and preferential loss of dopaminergic neurons to oxidative stress associated with neuroinflammation,” said Marcondes.

The finding also demonstrated that anti-inflammatory cytokines could contribute to neuronal loss. In their article, the authors note they are not suggesting that inflammation is benign but that IL-13 and IL-4 may be harmful to neurons expressing the IL-13Rá1, despite their ability to ultimately reduce inflammation. “One could say that it is not the fall that hurts you, but how you stop,” said Conti.

More Clues

Along with these results, additional clues suggest that the IL-13 receptor system could be a major player in Parkinson’s. For instance, some studies show Parkinson’s as more prevalent in males, and the gene for IL-13Rá1 is located on the X chromosome, where genetic variants are more likely to affect males.

And, though not definitive, other studies have suggested that Parkinson’s disease might be more common among allergy sufferers. Since IL-13 plays a role in controlling allergic inflammation, Conti wonders if the IL-13 receptor system might explain this correlation.

If further research confirms the IL-13 receptor acts in a similar way in human dopaminergic neurons as in mice, the discovery could pave the way to addressing the underlying cause of Parkinson’s disease. Researchers might, for instance, find that drugs that block IL-13 receptors are useful in preventing loss of dopaminergic cells during neuroinflammation. And, since the IL-13 receptor forms a complex with the IL-4 receptor alpha, this might also be a target of interest. With much exciting research ahead, Conti said, “This is just the beginning.”

This research was funded by the Ellison Medical Foundation; National Institutes of Health grants AG028040 and DA030908; and the Ministry of Education, Culture, Sports, Science and Technology of Japan.

In addition to Morrison, Marcondes and Conti, the other authors on the paper, “IL-13Rá1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic systemic treatment with LPS,” were Daniel Nomura, Manuel Sanchez-Alavez, Alejandro Sanchez-Gonzalez, Indrek Saar, and Tamas Bartfai, from TSRI, Kwang-Soo Kim from Harvard University, Pamela Maher from the Salk Research Institute, and Shuei Sugama from the Nippon Medical School in Tokyo.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, TSRI has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Jann Coury | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>