Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Work Together to Achieve Milestone Against Deadly Diseases

06.06.2012
Solve 1,000 Protein Structures from Infectious Disease Organisms

Investigators at the Center for Structural Genomics of Infectious Diseases (CSGID) and the Seattle Structural Genomics Center for Infectious Disease (SSGCID) announced today that they reached a significant milestone by determining 1,000 protein structures from infectious disease organisms. The knowledge gained from these structures should lead to new interventions for the deadly diseases caused by these pathogens.

Since 2007, the SSGCID, headed by Dr. Peter J. Myler of Seattle Biomedical Research Institute (Seattle BioMed), and the CSGID, headed Dr. Wayne Anderson, Molecular Pharmacology and Biological Chemistry at the Northwestern University Feinberg School of Medicine, have been funded by five-year contracts from the National Institute of Allergy and Infectious Diseases (NIAID), which is part of the National Institutes of Health (NIH).

Researchers in both centers use X-ray crystallography and nuclear magnetic resonance to examine the atomic details of proteins from more than 40 human pathogens, including those responsible for the plague, anthrax, salmonellosis, cholera, tuberculosis (TB), leprosy, amoebic dysentery and influenza. The proteins are selected for their biomedical relevance, as well as potential therapeutic and diagnostic benefits, with one-third being direct requests from the infectious disease research community. “We are laying the groundwork for drug discovery,” Anderson says. “Determining protein structures can help researchers find potential targets for new drugs, essential enzymes, and possible vaccine candidates.” Myler adds, “The importance of this work is highlighted by the 80+ scientific articles published by the two centers, which also showcase new methodologies developed by each center.”

One of the major challenges in medicine today is fighting bacteria that have become drug-resistant. Methicillin-resistant Staphylococcus aureus, commonly known as MRSA, is incredibly difficult to treat because it has developed a resistance to antibiotics, including penicillin and cephalosporins. “By determining the structure of proteins targeted by these drugs, we can now look at how the atoms are arranged in space and how they interact with one another,” Anderson says. “Then researchers can determine how the bacterium developed resistance and figure out what to change in the drug so that the bacteria will not recognize it.” Dr. Lance Stewart, co-PI of the SSGCID, continues, “The emergence of multi-drug resistant strains of Mycobacterium tuberculosis (MDR-TB), is also an important global health concern, with the most recent cases of TB emerging from India being considered extensively drug resistant (XDR-TB).” The World Health Organization (WHO) and other global health authorities have called for a concerted effort to identify new therapeutic agents for new and better drugs to combat TB, especially medications directed at treating drug resistant strains of the disease. The SSGCID has solved 22 structures from M. tuberculosis and an additional 126 closely related targets from other Mycobacterium species, which cause diseases such as leprosy, Buruli ulcer, and lung infections in AIDS patients. These structures will aid in the understanding of these deadly diseases, as well as providing a blueprint for development of new drugs.

When the two structural genomics centers originally received NIH funding, their expectation was to solve 750 structures, combined, over five years. However, both centers have been driven to exceed this goal by the need for structural data for these pathogens. Advances in technology and the efficiency of both teams allowed them to far exceed their initial goal, even before completion of the 5-year contract. “It used to take four years to determine one structure,” Anderson says, “now we can do about three per week.” Myler says, “The interaction of our centers with more than two hundred scientific collaborators will greatly accelerate drug development and understanding of the biology of these organisms.” Each institution in the two consortia contributes to different aspects of the high-throughput pipeline, which include selecting target proteins using bioinformatics, cloning their genes into bacteria for protein production, purification, and crystallization, with X-ray diffraction data collected at 9 different beam-lines around the United States and Canada. After the protein structures are solved, their coordinates are made available freely to the research community by deposition in the NIH-supported Protein Data Bank. The structures can also be accessed at the CSGID and SSGCID websites.

Members of the scientific community interested in nominating protein targets for structural determination can complete a request form on the SSGCID or CSGID website. This service is offered free of charge to the scientific community, and both centers also freely distribute the protein expression clones via the NIH-funded Biodefense and Emerging Infections Research Resources Repository.

Members of the SSGCID include Seattle BioMed (Seattle, WA), Emerald BioStructures (Bainbridge Island, WA), the University of Washington (Seattle, WA) and Pacific Northwest National Laboratory (Richland, WA). The CSGID is a multi-institutional, international consortium including researchers from the Northwestern University (Chicago, IL), University of Chicago (Chicago, IL), the J. Craig Venter Institute (Rockville, MD), University College London (London, United Kingdom), Sanford-Burnham Medical Research Institute (San Diego, CA), the University of Toronto (Toronto, Canada), the University of Virginia (Charlottesville, VA), the University of Texas Southwestern Medical Center at Dallas (Dallas, TX), and the Washington University School of Medicine (St. Louis, MO). For more information about the CSGID and SSGCID, respectively, and to view the protein target lists, visit http://www.csgid.org and http://www.ssgcid.org. CSGID and SSGCID have been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract Numbers HHSN272200700058C and HHSN272200700057C, respectively.

For more information, contact:
Jennifer Mortensen at 206.256.7220; jennifer.mortensen@seattlebiomed.org
Marla Paul at 312-503-8928; marla-paul@northwestern.edu

Jennifer Mortensen | EurekAlert!
Further information:
http://www.seattlebiomed.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>