Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'electronic nose' for rapid detection of C. diff infection

01.09.2014

Research from University of Leicester sniffs out smell of disease in feces

A fast-sensitive "electronic-nose" for sniffing the highly infectious bacteria C. diff, that causes diarrhoea, temperature and stomach cramps, has been developed by a team at the University of Leicester.


This image depicts from lef to right Dr Martha Clokie, Professor Andy Ellis and Professor Paul Monks from the University of Leicester with the mass spectrometer

Credit: University of Leicester

Using a mass spectrometer, the research team has demonstrated that it is possible to identify the unique 'smell' of C. diff which would lead to rapid diagnosis of the condition.

What is more, the Leicester team say it could be possible to identify different strains of the disease simply from their smell – a chemical fingerprint - helping medics to target the particular condition.

The research is published on-line in the journal Metabolomics.

Professor Paul Monks, from the Department of Chemistry, said: "The rapid detection and identification of the bug Clostridium difficile (often known as C. diff) is a primary concern in healthcare facilities. Rapid and accurate diagnoses are important to reduce Clostridum difficile infections, as well as to provide the right treatment to infected patients.

"Delayed treatment and inappropriate antibiotics not only cause high morbidity and mortality, but also add costs to the healthcare system through lost bed days.

Different strains of C. difficile can cause different symptoms and may need to be treated differently so a test that could determine not only an infection, but what type of infection could lead to new treatment options."

The new published research from the University of Leicester has shown that is possible to 'sniff' the infection for rapid detection of Clostridium difficile. The team have measured the Volatile Organic Compounds (VOCs) given out by different of strains of Clostridium difficile and have shown that many of them have a unique "smell". In particular, different strains show different chemical fingerprints which are detected by a mass spectrometer.

The work was a collaboration between University chemists who developed the "electronic-nose" for sniffing volatiles and a colleague in microbiology who has a large collection of well characterised strains of Clostridium difficile.

The work suggests that the detection of the chemical fingerprint may allow for a rapid means of identifying C. difficile infection, as well as providing markers for the way the different strains grow.

Professor Monks added: "Our approach may lead to a rapid clinical diagnostic test based on the VOCs released from faecal samples of patients infected with C. difficile. We do not underestimate the challenges in sampling and attributing C. difficile VOCs from faecal samples."

Dr Martha Clokie, from the Department of Microbiology and Immunology, added: "Current tests for C. difficile don't generally give strain information - this test could allow doctors to see what strain was causing the illness and allow doctors to tailor their treatment."

Professor Andy Ellis, from the Department of Chemistry, said: "This work shows great promise. The different strains of C. diff have significantly different chemical fingerprints and with further research we would hope to be able to develop a reliable and almost instantaneous tool for detecting a specific strain, even if present in very small quantities."

###

More info on C. diff: http://www.nhs.uk/conditions/clostridium-difficile/pages/introduction.aspx

Paul Monks | Eurek Alert!

Further reports about: Clostridium conditions difficile fingerprints highly infected nose smell strain strains

More articles from Health and Medicine:

nachricht UNC Team uses cellular bubbles to deliver Parkinson's meds directly to brain
05.05.2015 | University of North Carolina at Chapel Hill

nachricht Receptor provides a surprise
04.05.2015 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

NASA sees tropical storm noul strengthening, organizing

05.05.2015 | Earth Sciences

Puget Sound's clingfish could inspire better medical devices, whale tags

05.05.2015 | Life Sciences

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>