Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists design nano-sized drug transporter to fight disease

27.07.2011
Scientists seeking to improve cancer treatments have created a tiny drug transporter that maximizes its ability to silence damaging genes by finding the equivalent of an expressway into a target cell.

The transporter, called a nanocarrier, is a lipid-based structure containing a piece of RNA. Lipids are fatty molecules that help maintain the structure of cell membranes.

The RNA segment encased in the carrier sets off a process to silence genes, rendering the genes unable to produce proteins that lead to disease or other health problems.

Though the main component of the carrier resembles existing and previously studied transporters, Ohio State University scientists have attached specific helper molecules to the carrier’s surface that their research suggests can enhance the transporter’s effectiveness.

By finding the pathways that are equivalent to highways, vs. pathways similar to slower local routes, to get into the cells, the carriers then spend more time in the parts of the cells where they can dissolve and deposit the RNA segments. These segments, called small interfering RNA or siRNA, then can silence target genes for a prolonged period of time.

Recent studies suggest that the Ohio State-designed nanocarrier allows for a six-fold decrease in production of target proteins compared to the gene silencing effects resulting from the use of previously tested transporters.

“We have designed a different nanocarrier formulation and demonstrated that this formulation can affect the cellular entry pathway, which in turn affects how long the siRNA is exposed to the main body of the cell,” said Chenguang Zhou, a graduate student in pharmaceutics at Ohio State and lead author of the study. “More of that exposure equals better and longer gene silencing.”

The research was selected for a 2011 American Association of Pharmaceutical Scientists (AAPS) Innovation in Biotechnology Award. Zhou was invited to present the work at the recent AAPS National Biotechnology Conference.

The role of siRNA in cells has been established as an important gene-regulation mechanism that has the potential to protect cells against invaders, such as viruses, or to diminish the activity of oncogenes that cause cancer. But harnessing siRNA’s protective properties for therapeutic purposes has been difficult, partly because siRNA is too big and complex to travel through the gastrointestinal system or bloodstream. It also has a negative charge, as do most cell membranes, meaning that unless it is naturally generated inside a cell, it cannot penetrate cells by itself.

Other research groups have developed lipid-based nanocarriers. The nanocarrier that Zhou and his colleagues have designed, however, uses a different method – it has a special compound on the surface that helps it slip more easily into the cell.

In all cases, a synthetic form of siRNA – one that is specifically related to a target gene – is manufactured to mimic the pieces of RNA that exist in nature. The siRNA is then encapsulated inside the nanocarrier, which functions as an siRNA delivery device into target cells.

In experiments in cells comparing the effects of traditional nanocarriers and Zhou’s carrier, called a SPANosome, the researchers found that siRNA delivered by the SPANosome was about six times more effective at silencing the target gene activity than was the siRNA transported by traditional carriers. The Ohio State carrier reduced the associated protein production by 95 percent, compared to a 70.6 percent reduction in proteins resulting from the use of the traditional carrier.

The researchers then set out to find out why their carrier was so effective.

They knew, based on previous research, that to perform its role, siRNA must escape from a compartment inside a cell to maximize its exposure to the main body of the cell. It also must avoid another specific part of the cell where outsiders are degraded and fall apart. This whole process is called pharmacokinetics.

To observe this activity, the scientists used sophisticated fluorescent imaging techniques to detect how effective the siRNA was at different time points after it was introduced to cells via different types of carriers. They found that four hours after introduction to liver cancer cells, the siRNA transported by the SPANosome had 3.5 times more exposure to the cell body than did siRNA transported by more traditional carriers.

“We saw a correlating increase of 3.5 times more gene silencing activity,” Zhou said. “The reason you want to study pharmacokinetics is because you want to find the exposure and response relationship. The reason the SPANosome is more effective is because it allows for increased exposure of siRNA to the main part of the cell.”

Because siRNA can occur naturally in every cell, nanocarriers used to deliver siRNA for therapeutic purposes must be designed so that they penetrate only target cells, such as tumor cells or liver cells, to silence specific genes related to disease. The researchers used additional imaging techniques to track how their carrier finds its target cells.

And this is where the highway concept came into play. Nanocarriers have essentially three possible pathways into the cell – two that are equivalent to highways and one that is more similar to a slower, local route. The SPANosome, because of its design, uses the highway pathways to enter liver cancer cells, reducing its chances of getting sent to parts of the cell where it will be broken into pieces.

Zhou and colleagues are collaborating with medical and biotech industry researchers to further test the SPANosome as a potential vehicle to deliver drugs for cancer treatment, especially in liver cancer.

This work was supported by the National Science Foundation (NSF) and the National Institutes of Health. Zhou has a fellowship in Ohio State’s NSF Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices.

Co-authors of the work are Robert Lee of the Division of Pharmaceutics and L. James Lee of the Department of Chemical and Biomolecular Engineering, both at Ohio State.

Contact: Chenguang Zhou, (614) 292-5870; zhou.213@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Chenguang Zhou | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>