Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary therapy slows tumor growth in advanced breast cancer

06.07.2010
New strategy holds promise for fewer patient side effects

A novel therapy designed to attack tumors in patients with a genetic mutation in either BRCA1 or BRCA2, slowed tumor growth in 85 percent of advanced breast cancer patients treated in a small study, researchers report in the July 6 issue of the Lancet.

"That is really an enormous response rate in a population of patients who have received a median of three prior therapies," says study co-author Susan M. Domchek, MD, associate professor of Medicine, University of Pennsylvania School of Medicine, and director of the Cancer Risk Evaluation Program at Penn's Abramson Cancer Center.

"This is the first time that we have been able to take the genetic reason a person has developed cancer and make it a target," Domchek says. "Most of the time we look at what is going on in the tumor itself and then figure out how to target it. But in this situation, the women all had an inherited mutation in either the BRCA1 or BRCA2 gene and we could exploit that weakness in the tumor. It is a strategy that may cause fewer side effects for patients."

The new agent, called olaparib, inhibits a protein called poly(ADP-ribose) polymerase (PARP). Both PARP and the BRCA proteins are involved in DNA repair. And while cells seem to be able to do without one or the other, inhibiting PARP in a tumor that lacks a BRCA gene is too much for the cells, and causes them to die.

"If you put too much stress on the cancer cell, it can't take it and it falls apart," Domchek says. Because the non-tumor cells in a patient with an inherited BRCA mutation still retain one normal copy of the BRCA gene, they are relatively unaffected by PARP inhibition. "These drugs may be very potent in tumor cells and much less toxic in normal cells. That is important from the perspective of cancer treatment," Domchek says.

The international study enrolled 54 patients in two groups. The first group of 27 women received 400 mg oral olaparib twice daily and the second group of 27 patients received 100 mg oral olaparib twice daily. The higher dose appeared to have more activity against the disease, with one patient (4%) having a complete resolution of her tumor and ten (37%) showing substantial tumor shrinkage. Another 12 (44%) women had stable disease or some tumor shrinkage, but not enough to be considered a partial response by standard criteria. In the low dose group, six (22%) patients showed substantial shrinkage and 12 (44%) had some tumor shrinkage or stable disease.

Although the results look good thus far, Domchek says more clinical trials will be necessary before olaparib or other PARP inhibitors in development will be ready for use in regular practice. "It is important for patients to join those clinical trials because we need to determine how best to use these drugs, on their own or in combination with other agents," she said. "And we need to establish definitively that they are better than other drugs."

The PARP inhibitors are a transition in the field of cancer drug development. "This is a different way of looking at cancer therapeutics," Domchek says. "In oncology, this is really one of the first times that we've seen drugs being developed on the basis of inherited susceptibility – and that may open up a whole new avenue of drug development."

Penn was one of just six centers in the United States to participate in the clinical trial. The trial was led by Andrew Tutt, MD, of the Breakthrough Breast Cancer Research Unit at Kings College London School of Medicine. Breakthrough Breast Cancer is a pioneering charity dedicated to the prevention, treatment and ultimate eradication of breast cancer through research, campaigning and education. Co-authors on the study are Mark Robson (Memorial Sloan-Kettering Cancer Center, New York), Judy E Garber (Dana-Farber Cancer Institute, Boston), M William Audeh (Samuel Oschin Cancer Institute, Los Angeles), Jeffrey N Weitzel (City of Hope Comprehensive Cancer Center, Duarte, CA), Michael Friedlander (Prince of Wales Cancer Centre, Sydney, Australia), Banu Arun (MD Anderson Cancer Center, Houston), Niklas Loman (Skane University Hospital and Lund University Hospital, Sweden), Rita K Schmutzler (University Hospital Cologne, Germany), Andrew Wardley (The Christie Hospital NHS Foundation Trust, Manchester, UK), Gillian Mitchell (Peter MacCallum Cancer Centre, East Melbourne, Australia), Helena Earl (University of Cambridge and NIHR Cambridge Biomedical Research Centre, UK), and Mark Wickens and James Carmichael (AstraZeneca, Macclesfield, UK).

AstraZeneca provided funding for the trial. Dr. Domchek has no ties to AstraZeneca and no other disclosures to report.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn's School of Medicine is currently ranked #3 in U.S. News & World Report's survey of research-oriented medical schools, and is consistently among the nation's top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine's patient care facilities include:

The Hospital of the University of Pennsylvania – the nation's first teaching hospital, recognized as one of the nation's top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation's first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2008, Penn Medicine provided $282 million to benefit our community.

Stephanie Simon | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: AstraZeneca BRCA BRCA1 BRCA2 Cancer Medicine breast cancer health services tumor cells

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>