Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revising the 'textbook' on liver metabolism offers new targets for diabetes drugs

22.02.2012
A team led by researchers from the Institute for Diabetes, Obesity and Metabolism (IDOM) at the Perelman School of Medicine, University of Pennsylvania, has overturned a "textbook" view of what the body does after a meal. The study appears online this week in Nature Medicine, in advance of print publication.
Normally after a meal, insulin shuts off glucose production in the liver, but insulin resistance – when the hormone becomes less effective at lowering blood sugars – can become a problem.

The Penn group showed that mice without the genes Akt1 and Akt2 in their livers were insulin resistant and defective in their response to feeding with respect to blood sugar levels. In these mice, blood sugar levels remained high after a meal. When Akt is not present, another gene, Foxo, is on all the time, and the liver "thinks" the body is fasting. In response, glucose production stays on to keep cells supplied in energy-rich molecules.

But then, says senior author Morris Birnbaum, MD, PhD, professor of medicine and IDOM Associate Director, "In further experiments, we expected that Akt and Foxo knockout mice – when we gave them a meal – to be locked into a fed state metabolically if both proteins were gone," says Birnbaum. "But, the liver responded normally after a meal, so we asked what is regulating the liver and glucose production in the absence of both the Akt and Foxo proteins?"

These results are inconsistent with the textbook model of liver metabolism that the Birnbaum lab proposed a decade ago, in which the Akt protein is absolutely required for proper insulin signaling. The team surmised that there must be a backup pathway in the liver that governs glucose metabolism.

Back Then
Ten years ago, a study in Science by Birnbaum's research group described that the inactivation of the protein Akt2 led to diabetes in mice. The result was that insulin was not working in the fat cells and liver of these mice,
proving that Akt is required for insulin to function properly. From then on, an accepted pathway for insulin control of blood sugar was that the Akt protein turned off Foxo1, a protein that governs genes that make glucose. Specifically, when Foxo1 is on, it drives glucose production. After a meal, Akt modifies Foxo1 so that it reduces Foxo1's activity. This turns off glucose production, so blood sugar levels stay within a safe range after eating.

"When we started our present experiments to see how this pathway might apply to other aspects of metabolic regulation, this scenario is what we expected to see, based on the literature," notes Birnbaum.

Backup Systems
Why would animals need a seemingly redundant pathway? The scenario that the researchers favor is that insulin is working on other tissues' receptors and also communicates with the liver before and after a meal. The candidate organ is the brain via the nervous system. Studies by other labs have shown there are insulin receptors in the brain and suggested such a pathway may exist, though many scientists have been hesitant to accept this notion due to conflicting data, says Birnbaum.

However, the new results from the Birnbaum lab provide an explanation of why it has been difficult to see the backup pathway: When insulin signaling in the liver is disrupted, the organ loses its ability to respond to outside signals.

The team surmises that the normal state for the body is that Foxo is off most of the time, but during a diabetic state, Foxo is inappropriately activated. And when Foxo is on, which they propose is not the normal state, the liver is prevented from responding to the brain's signal to stop or start glucose production. The team is now working on testing this hypothesis.

In the short run, these results suggest several other pathways to target in the hope to bypass the block in insulin action that occurs in Type 2 diabetes. First, one could try to mimic the signal external to the liver. Second, it might be possible to develop therapies that allow the liver to respond to signals from such other organs as the brain, even though usually during diabetes the active Foxo1 prevents this.

Co-authors on the study include lead author Mingjian Lu, as well as Min Wan, Karla F Leavens, Qingwei Chu, Bobby R Monks, Sully Fernandez, and Rex Ahima, all from Penn. Kohjiro Ueki and C, Ronald Kahn from the University of Tokyo and Joslin Diabetes Center, respectively, were also co-authors.

The Functional Genomics Core and the Transgenic, Knockout, Mouse Phenotyping and Biomarker Cores of the University of Pennsylvania Diabetes and Endocrinology Research Center (NIH grant P30 DK19525), in part, funded the research. This work was also supported by the NIH grant RO1 DK56886 and the diabetes training grant T32 DK007314.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>