Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilience factor low in depression, protects mice from stress

17.05.2010
Targeting gene regulator in brain reward circuit eyed as treatment

Scientists have discovered a mechanism that helps to explain resilience to stress, vulnerability to depression and how antidepressants work. The new findings, in the reward circuit of mouse and human brains, have spurred a high tech dragnet for compounds that boost the action of a key gene regulator there, called deltaFosB.

A molecular main power switch – called a transcription factor – inside neurons, deltaFosB turns multiple genes on and off, triggering the production of proteins that perform a cell's activities.

"We found that triggering deltaFosB in the reward circuit's hub is both necessary and sufficient for resilience; it protects mice from developing a depression-like syndrome following chronic social stress," explained Eric Nestler, M.D., of the Mount Sinai School of Medicine, who led the research team, which was funded by the National Institute of Health's National Institute of Mental Health (NIMH).

"Antidepressants can reverse this social withdrawal syndrome by boosting deltaFosB. Moreover, deltaFosB is conspicuously depleted in brains of people who suffered from depression. Thus, induction of this protein is a positive adaptation that helps us cope with stress, so we're hoping to find ways to tweak it pharmacologically," added Nestler, who also directs the ongoing compound screening project.

Nestler and colleagues report the findings that inspired the hunt online May 16 2010 in the journal Nature Neuroscience.

"This search for small molecules that augment the actions of deltaFosB holds promise for development of a new class of resilience-boosting treatments for depression," said NIMH director Thomas R. Insel. "The project, funded under the American Recovery and Reinvestment Act of 2009, is a stunning example of how leads from rodent experiments can be quickly followed up and translated into potential clinical applications."

DeltaFosB is more active in the reward hub, called the nucleus accumbens (see diagram below), than in any other part of the brain. Chronic use of drugs of abuse – or even natural rewards like excess food, sex or exercise – can gradually induce increasing levels of this transcription factor in the reward hub. Nestler and colleagues have shown that this increase in deltaFosB can eventually lead to lasting changes in cells that increase rewarding responses to such stimuli, hijacking an individual's reward circuitry – addiction.

The new study in mice and human post-mortem brains confirms that the same reward circuitry is similarly corrupted (though to a lesser degree than with drugs of abuse) in depression via effects of stress on deltaFosB.

Depressed patients often lack motivation and the ability to experience reward or pleasure – and depression and addiction often go together. Indeed, mice susceptible to the depression-like syndrome show enhanced responses to drugs of abuse, the researchers have found.

But the similarity ends there. For, while an uptick in deltaFosB promotes addiction, the researchers have determined that it also protects against depression-inducing stress. It turns out that stress triggers the transcription factor in a different mix of nucleus accumbens cell types – working through different receptor types – than do drugs and natural rewards, likely accounting for the opposite effects.

The researchers explored the workings of deltaFosB in a mouse model of depression. Much as depressed patients characteristically withdraw from social contact, mice exposed to aggression by a different dominant mouse daily for 10 days often become socially defeated; they vigorously avoid other mice, even weeks later.

Among key findings in the brain's reward hub:

The amount of deltaFosB induced by the stress determined susceptibility or resilience to developing the depression-like behaviors. It counteracted the strong tendency to learn an association, or generalize, the aversive experience to all mice.

Induction of deltaFosB was required for the antidepressant fluoxetine (Prozac) to reverse the stress-induced depression-like syndrome.

Prolonged isolation from environmental stimuli reduced levels of deltaFosB, increasing vulnerability to depression-like behaviors.

Among numerous target genes regulated by deltaFosB, a gene that makes a protein called the AMPA receptor is critical for resilience – or protecting mice from the depression-like syndrome. The AMPA receptor is a protein on neurons that boosts the cell's activity when it binds to the chemical messenger glutamate.

Increased activity of neurons triggered by heightened sensitivity of AMPA receptors to glutamate increased susceptibility to stress-induced depression-like behavior.

Induction of deltaFosB calmed the neurons and protected against depression by suppressing AMPA receptors' sensitivity to glutamate.

Post-mortem brain tissue of depressed patients contained only about half as much deltaFosB as that of controls, suggesting that poor response to antidepressant treatment may be traceable, in part, to weak induction of the transcription factor.

Reduced deltaFosB in the reward hub likely helps to account for the impaired motivation and reward behavior seen in depression, said Nestler. Boosting it appears to enable an individual to pursue goal-directed behavior despite stress.

The high-tech screening for molecules that boost DeltaFosB, supported by the Recovery Act grant, could lead to development of medications that would help people cope with chronic stress. The molecules could also potentially be used as telltale tracers in brain imaging to chart depressed patients' treatment progress by reflecting changes in deltaFosB, said Nestler.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>