Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover why the body can't defend against tuberculosis

15.11.2011
The stealth art of infectious agents: Researchers uncover why the body can't defend against tuberculosis

Tuberculosis, which kills over 2 million people each year, is caused primarily by infectious bacteria known as Mycobacterium tuberculosis – or Mtb. Mtb targets human immune cells as part of its strategy to avoid detection, effectively neutralizing the body's immune response.

Up until now, scientists had a general understanding of the process, but researchers in the Immunity and Infection Research Centre at Vancouver Coastal Health Research Institute and the University of British Columbia have shown Mtb produces a specific protein that allows it to defuse and bypass the body's security system. The results are published today in The Proceedings of the National Academy of Sciences, and provide a pathway for improved treatments against this disease.

"TB has been able to completely mislead our immune systems, convincing our body it isn't there, which is why it is such an effective killer," says Dr. Yossef Av-Gay, research scientist with the Immunity and Infection Research Centre at the Vancouver Coastal Research Institute and professor in the Division of Infectious Disease at UBC Faculty of Medicine. "We discovered that the cells in charge of targeting and destroying invading bacteria are being fooled by a special protein that blocks the immune cells ability to recognize and destroy it."

Here is how it works. Macrophages are dedicated human immune cells with the role of identifying and defeating dangerous microorganisms. Normally, macrophages engulf bacteria, or other infectious agents, and contain them in an enclosed secluded environment. Then, special components of the cell (cellular organelles) move to the controlled area and release acid enzymes that dissolve the bacteria. The system works beautifully against most infectious agents. However, as Dr. Av-Gay's team found, Mtb operates in a stealth manner, turning off this immune response.

In the case of Mtb, once the bacteria become engulfed by macrophages, they secrete a protein named PtpA that disables the two separate mechanisms required for making the acidic environment that normally targets them. The end result is that Mtb lives comfortably in the immune cells, like a Trojan horse, hidden from the rest of the immune system. The bacteria then multiply inside the macrophage, and when released, they attack the body.

"We have been engaged in studying the interaction between the TB bacterium and the human macrophage over the past decade," says Dr. Av-Gay. "We are delighted with this discovery. Through learning about the tricks it uses, we now have new targets, so that we can develop better drugs against this devastating disease."

TB is the leading cause of death among infectious diseases in the world today and is responsible for one in four adult preventable deaths, according to the World Health Organization (WHO). Every 20 seconds TB kills someone, with approximately 4400 people dying every day. The WHO estimates that one-third of the world's population is infected.

Vancouver Coastal Health Research Institute is the research body of Vancouver Coastal Health Authority, which includes BC's largest academic and teaching health sciences centres: Vancouver General Hospital, UBC Hospital, and GF Strong Rehabilitation Centre. The institute is academically affiliated with UBC Faculty of Medicine, and is one of Canada's top funded research centres, with $82.4 million in research funding for 2009/2010. www.vchri.ca.

The University of British Columbia (UBC) is one of North America's largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC offers more than 55,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

For media enquiries, please contact: Lisa Carver, Communications & Public Affairs

VCH/VCH Research Institute - 604 875-4111 x 61777 or 604 319-7533 – lisa.carver@vch.ca

Lisa Carver | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>