Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Novel Mechanism That Helps Stomach Bug Cause Illness

30.07.2013
A seafood contaminant that thrives in brackish water during the summer works like a spy to infiltrate cells and quickly open communication channels to sicken the host, researchers at UT Southwestern Medical Center report.

Vibrio parahaemolyticus bacteria, which cause gastroenteritis, inject proteins called effectors into host cells. One of those effectors, VopQ, almost immediately starts to disrupt the important process of autophagy via a novel channel-forming mechanism, the scientists report in the investigation available online at the Proceedings of the National Academy of Sciences.

Autophagy is the cellular housekeeping mechanism used to recycle nutrients in cells as well as to fight off pathogens. The term autophagy comes from the Greek words for self and eating. During the process, nutrients are recycled by the lysosome, an internal organelle, to produce metabolites that can be used by the cell.

“Our study identifies a bacterial effector that creates gated ion channels and reveals a novel mechanism that may regulate autophagy,” said Dr. Kim Orth, professor of molecular biology and biochemistry. She is a corresponding author on the published study. The first author is Anju Sreelatha, a graduate student in Dr. Orth’s laboratory.

“Disruptions of autophagic pathways are implicated in many human diseases, including neurodegenerative disease, liver disease, some cancers, and cardiomyopathy (heart muscle disease),” Ms. Sreelatha said.

She explained that ion channels are pores in the membranes of cells or of organelles within cells that allow regulated passage of small molecules or ions across membranes. Gated channels have a mechanism that opens and closes them, making these proteins potential targets for drug development.

“The identification of a channel that opens and closes and thereby affects autophagy may give us a handle by which to modulate this important process,” she said, adding that the researchers found that VopQ’s channel activity turned off autophagy.

“During infection, VopQ is injected into the host cell where the protein binds to a lysosomal membrane protein and forms small pores, all within minutes of infection. The resulting complex of proteins causes ions to leak and the lysosomes to de-acidify. Lacking acidification, lysosomes cannot degrade the unneeded cellular components and autophagy is disrupted,” Ms. Sreelatha said.

Dr. Orth said “Bacterial pathogens have evolved a number of ways to target and manipulate host cell signaling; the ability of VopQ to form a gated ion channel and to inhibit autophagy represents a novel mechanism.”

Further characterization of the mechanism by which VopQ sabotages cells to disrupt autophagy may lead to a better understanding of host-pathogen interactions as well as advance our understanding of the pathway, eventually leading to new treatments for diseases in which autophagy has gone awry, they noted.

Other UT Southwestern scientists involved were Dr. Hui Zheng, a postdoctoral researcher of cell biology, and Dr. Qiu-Xing Jiang, assistant professor of cell biology. Also participating were Terry Bennett and Dr. Vincent Starai of the University of Georgia.

Funding was provided by the National Institute of Allergy and Infectious Diseases; the Burroughs Wellcome Foundation; the Welch Foundation; the National Institute of General Medical Sciences; the Cancer Prevention and Research Institute of Texas; and by University of Georgia Startup Funds.

About UT Southwestern Medical Center
UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 90,000 hospitalized patients and oversee more than 1.9 million outpatient visits a year.
This news release is available on our home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via email,
subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | Newswise
Further information:
http://www.utsouthwestern.edu/receivenews

More articles from Health and Medicine:

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>