Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers ID brain abnormalities in children exposed to methamphetamine in utero

17.03.2010
Knowing the pattern of damage could help with diagnosis of affected children
It has long been known that alcohol exposure is toxic to the developing fetus and can result in lifelong brain, cognitive and behavioral problems. Now, a new report out of UCLA shows that the effects of prenatal methamphetamine exposure — or worse, a combination of methamphetamine and alcohol — may be even more damaging.

Reporting in the March 17 issue of the Journal of Neuroscience, UCLA professor of neurology Elizabeth Sowell and her colleagues used structural magnetic resonance imaging (sMRI) to show for the first time that individuals whose mothers abused methamphetamine during pregnancy, with or without alcohol abuse, had structural abnormalities in the brain that were more severe than those seen in children whose mothers abused alcohol alone.

The researchers identified the brain structures that are vulnerable in such exposure, which may help predict particular learning and behavioral problems in methamphetamine-exposed children.

"We know that alcohol exposure is toxic to the developing fetus and can result in lifelong problems," said Sowell, the study's senior author. "In this study, we show that the effects of prenatal meth exposure, or the combination of meth and alcohol exposure, may actually be worse, and our findings stress the importance of seeking drug-abuse treatment for pregnant women."

In particular, said Sowell, a structure in the brain called the caudate nucleus, which is important for learning and memory, motor control, and punishment and reward, was one of the regions that was more reduced by methamphetamine than alcohol exposure.

Of the more than 16 million Americans over the age of 12 who have used methamphetamine, about 19,000 have been pregnant women, according to 2002–04 data from the National Survey on Drug Use and Health.

"About half of women who say they used meth during pregnancy also used alcohol," Sowell said, "so isolating the effects of meth on the developing brain was difficult."

The researchers overcame this challenge, she said, by recruiting women who abused alcohol but not methamphetamine during pregnancy and compared them to the children with exposure to both drugs, and to a group that was not exposed.

The neuroscientists evaluated the specific effects of prenatal methamphetamine exposure by comparing brain scans of 61 children, whose average age was 11. Of these, 21 had prenatal methamphetamine and alcohol exposure, 13 had heavy alcohol exposure only and 27 were unexposed. Structural magnetic resonance imaging showed that the sizes and shapes of certain brain structures varied depending on prenatal drug exposure.

Previous studies have shown that certain brain structures are smaller in alcohol-exposed children. In this study, the authors found that these brain regions in methamphetamine-exposed children were similar to those in alcohol-exposed children and that in some areas they were even smaller. Some brain regions were larger than normal. For example, an abnormal volume increase was noted in methamphetamine-exposed children in a region called the cingulate cortex, which is associated with control and conflict resolution.

"Either scenario — smaller or larger growth — could be a bad thing in kids with prenatal drug exposure," Sowell noted. "There are enormous developmental changes that take place during adolescence. These drugs are likely altering the trajectory of development, and clearly not in a good way."

This brain imaging may also aid in treatment. Because the researchers were also able to predict a child's past exposure to drugs based on imaging and IQ information, detailed data about vulnerable brain structures may eventually be used to diagnose children with cognitive or behavioral problems, even when well-documented histories of drug exposure are not available.

"The tragedy here is that all these developmental problems are 100 percent avoidable," Sowell said. "The important message is to urge drug abusing women to seek treatment during pregnancy."

Other authors on the paper included Alex D. Leow, Susan Y. Bookheimer, Lynne M. Smith, Mary J. O'Connor, Eric Kan, Carly Rosso, Suzanne Houston, Ivo D. Dinov and Paul M. Thompson, all of UCLA.

The research was supported by the National Institute of Drug Abuse, the National Institute on Alcohol Abuse and Alcoholism, and the March of Dimes. Additional support was provided by the National Center for Research Resources, the General Clinical Research Center, and the National Institutes of Health.

The UCLA Department of Neurology encompasses more than a dozen research, clinical and teaching programs that cover brain mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation, and neurovascular disorders. The department ranks first among its peers nationwide in National Institutes of Health funding.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>