Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore connection between popular pain relievers, bladder cancer

08.11.2012
Duration of ibuprofen use may be related to a reduced risk, especially in those with certain genetic marker

Dartmouth researchers have found that duration of ibuprofen use was associated with a reduced risk of bladder cancer in patients in northern New England, which has a high mortality rate of this disease.

In a 2012 collaborative project with the National Cancer Institute, Margaret Karagas, PhD, co-director, Cancer Epidemiology & Chemoprevention program at Norris Cotton Cancer Center, and Professor of Community and Family Medicine at the Geisel School of Medicine at Dartmouth, and Richard Waddell, D.Sc, Research Assistant Professor of Medicine at the Geisel School of Medicine, looked for connections between ibuprofen use and bladder cancer.

Bladder cancer and ibuprofen use

Karagas did an earlier study on the relationship between bladder cancer and nonsteroidal anti-inflammatory drugs (NSAIDs) usage in New Hampshire. The new study included patients in Vermont and Maine. Researchers enrolled 1,171 participants newly diagnosed with bladder cancer and 1,418 participants who did not have bladder cancer. Karagas also added a genetic component looking at thirty-nine genes related to NSAID metabolism and studied a new class of NSAIDs known as selective cyclooxygenase (COX-2) inhibitors, such as celecoxib (Celebrex). Their results were published in the International Journal of Cancer (June 2012).

Those with specific genetic traits appear to have reduced risk

The findings in the recent study suggest that "regular use of nonaspirin nonselective NSAIDs, particularly ibuprofen, may reduce bladder cancer risk, especially among regular users for 10 years or more." However, the study also notes that observed reduction in risk was specific to individuals carrying a specific allele (or variant of a gene) related to NSAID metabolism.

Findings suggest further study needed for newer prescription pain reliever

For Karagas one of the novel findings was a trend of an increased risk of bladder cancer for those using selective COX-2 inhibitors, especially celocoxib (Celebrex). Karagas warns against leaping to any conclusions, noting, "further investigation is needed."

Karagas also stresses that this study "does not make any recommendations. It does not, in any way, suggest that patients begin taking ibuprofen as a prophylactic measure against bladder cancer, nor should patients go off any medicine prescribed by their doctor."

This research study was funded by the National Institutes of Health Grant number: N02-CP-01037

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth College and the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu

Donna Dubuc | EurekAlert!
Further information:
http://www.hitchcock.org
http://cancer.dartmouth.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>