Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover primary role of the olivocochlear efferent system

28.03.2013
Light shed on the natural mechanism that protects ears from hearing loss

New research from the Massachusetts Eye and Ear, Harvard Medical School and Harvard Program in Speech and Hearing Bioscience and Technology may have discovered a key piece in the puzzle of how hearing works by identifying the role of the olivocochlear efferent system in protecting ears from hearing loss. The findings could eventually lead to screening tests to determine who is most susceptible to hearing loss. Their paper is published today in the Journal of Neuroscience.

Until recently, it was common knowledge that exposure to a noisy environment (concert, iPod, mechanical tools, firearm, etc.), could lead to permanent or temporary hearing loss. Most audiologists would assess the damage caused by this type of exposure by measuring hearing thresholds, the lowest level at which one starts to detect/sense a sound at a particular frequency (pitch). Drs. Sharon Kujawa and Charles Liberman, both researchers at Mass. Eye and Ear, showed in 2009 that noise exposures leading to a temporary hearing loss in mice (when hearing thresholds return to what they were before exposure) in fact can be associated with cochlear neuropathy, a situation in which, despite having a normal threshold, a portion of auditory nerve fibers is missing).

The inner ear, the organ that converts sounds into messages that will be conveyed to and decoded by the brain, receives in turn fibers from the central nervous system. Those fibers are known as the olivocochlear efferent system. Up to now, the involvement of this efferent system in the protection from acoustic injury – although clearly demonstrated – has been a matter of debate because all the previous experiments were probing its protective effects following noise exposures very unlikely to be found in nature.

Stephane Maison, Ph.D., investigator at the Eaton-Peabody Laboratory at Mass. Eye and Ear and lead author, explains. "Humans are currently exposed to the type of noise used in those experiments but it's hard to conceive that some vertebrates, thousands of years ago, were submitted to stimuli similar to those delivered by speakers. So many researchers believed that the protective effects of the efferent system were an epiphenomenon – not its true function."

Instead of using loud noise exposures evoking a change in hearing threshold, we used a moderate noise exposure at a level similar to those found in restaurants, conferences, malls, and also in nature (some frogs emit vocalizations at similar or higher levels) and instead of looking at thresholds, we looked for signs of cochlear neuropathy, Dr. Maison continued.

The researchers demonstrated that such moderate exposure lead to cochlear neuropathy (loss of auditory nerve fibers), which causes difficulty to hear in noisy environments.

"This is tremendously important because all of us are submitted to such acoustic environments and it takes a lot of auditory nerve fiber loss before it gets to be detected by simply measuring thresholds as it's done when preforming an audiogram," Dr. Maison said. "The second important discovery is that, in mice where the efferent system has been surgically removed, cochlear neuropathy is tremendously exacerbated. That second piece proves that the efferent system does play a very important role in protecting the ear from cochlear neuropathy and we may have found its main function."

The researchers say they are excited about this discovery because the strength of the efferent system can be recorded non-invasively in humans and a non-invasive assay to record the efferent system strength has already been developed and shows that one is able to predict vulnerability to acoustic injury (Maison and Liberman, Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength, Journal of Neuroscience, 20:4701-4707, 2000).

"One could envision applying this assay or a modified version of it to human populations to screen for individuals most at risk in noise environments," Dr. Maison concluded.

This work was supported by the National Institute on Deafness and Other Communication disorders (Grants RO1 DC 0188 and P30 DC 05209).

A full list of authors and affiliations and full acknowledgement of all contributors is available in the pdf of the paper, "Efferent Feedback Minimizes Cochlear Neuropathy from Moderate Noise Exposure."

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute in 2011, Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is home to the Eaton-Peabody Laboratories, the largest collection of basic hearing laboratories. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology as top five in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>