Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research confirms efficacy of transcranial magnetic stimulation for depression

27.07.2012
Naturalistic study shows transcranial magnetic stimulation works for depression in real-life clinical practice settings

In one of the first studies to look at transcranial magnetic stimulation (TMS) in real-world clinical practice settings, researchers at Butler Hospital, along with colleagues across the U.S., confirmed that TMS is an effective treatment for patients with depression who are unable to find symptom relief through antidepressant medications. The study findings are published online in the June 11, 2012 edition of Depression and Anxiety in the Wiley Online Library.

Previous analysis of the efficacy of TMS has been provided through more than 30 published trials, yielding generally consistent results supporting the use of TMS to treat depression when medications aren't sufficient. "Those previous studies were key in laying the groundwork for the FDA to approve the first device for delivery of TMS as a treatment for depression in 2008," said Linda Carpenter, MD, lead author of the report and chief of the Mood Disorders Program and the Neuromodulation Clinic at Butler Hospital. "Naturalistic studies like ours, which provide scrutiny of real-life patient outcomes when TMS therapy is given in actual clinical practice settings, are the next step in further understanding the effectiveness of TMS. They are also important for informing healthcare policy, particularly in an era when difficult decisions must be made about allocation of scarce resources."

Carpenter explains that naturalistic studies differ from controlled clinical trials because they permit the inclusion of subjects with a wider range of symptomatology and comorbidity, whereas controlled clinical trials typically have more rigid criteria for inclusion. "As a multisite study collecting naturalistic outcomes from patients in clinics in various regions in the U.S., we were also able to capture effects that might arise from introducing a novel psychiatric treatment modality like TMS in non-research settings," said Carpenter. In all, the study confirms how well TMS works in diverse settings where TMS is administered to a real-life population of patients with depression that have not found relief through many other available treatments.

The published report summarized data collected from 42 clinical TMS practice sites in the US, and included outcomes from 307 patients with Major Depressive Disorder (MDD) who had persistent symptoms despite the use of antidepressant medication. Change during TMS was assessed using both clinicians' ratings of overall depression severity and scores on patient self-report depression scales, which require the patient to rate the severity of each symptom on the same standardized scale at the end of each 2-week period. Rates for "response" and "remission" to TMS were calculated based on the same cut-off scores and conventions used for other clinical trials of antidepressant treatments. Fifty-eight percent positive response rate to TMS and 37 percent remission rate were observed.

"The patient outcomes we found in this study demonstrated a response rate similar to controlled clinical trial populations," said Dr. Carpenter, explaining that this new data validates TMS efficacy in treating depression for those who have failed to benefit from antidepressant medications. "Continued research and confirmation of the effectiveness of TMS is important for understanding its place in everyday psychiatric care and to support advocacy for insurance coverage of the treatment." Thanks in part to the advocacy efforts of Dr. Carpenter, TMS was recently approved for coverage by Medicare in New England, and it is also now covered by BCBSRI. "Next steps for TMS research involve enhancing our understanding of how to maintain positive response to TMS over time after the course of therapy ends and learning how to customize the treatment for patients using newer technologies, so TMS can help even more patients."

Butler Hospital is the only private, nonprofit psychiatric and substance abuse hospital serving adults, adolescents and children in Rhode Island and southeastern New England. Founded in 1844, it was the first hospital in Rhode Island and has earned a reputation as the leading provider of innovative psychiatric treatments in the region. The flagship hospital for the Department of Psychiatry and Human Behavior at the Warren Alpert Medical School of Brown University, Butler is recognized worldwide as a pioneer in conducting cutting-edge research.

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.womenandinfants.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>