Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to rescue the immune system

27.02.2012
Study in Nature Medicine could lead to novel therapy for cancer
In a study published in Nature Medicine, Loyola researchers report on a promising new technique that potentially could turn immune system killer T cells into more effective weapons against infections and possibly cancer.

The technique involves delivering DNA into the immune system's instructor cells. The DNA directs these cells to overproduce a specific protein that jumpstarts important killer T cells. These killer cells are typically repressed in patients who have HIV or cancer, said José A. Guevara-Patino, MD, PhD, senior author of the study. Guevara is an Associate Professor in the Oncology Institute of Loyola University Chicago Stritch School of Medicine.

Guevara and colleagues reported their technique proved effective in jumpstarting defective immune systems in immuno-compromised mice and in human killer T cells taken from people with HIV.

Guevara said a clinical trial in cancer patients could begin in about three years.

The study involved killer cells, known as CD8 T cells, and their instructor cells, known as antigen-presenting cells. The instructor cells instruct CD8 T cells to become killer T cells to kill infected cells or cancer cells -- and to remain vigilant if they reencounter pathogens or if the cancer comes back.

In addition to getting instructions from the antigen-presenting cells, CD8 T cells need assistance from helper T cells to become effective killers. Without this assistance, the killer T cells can't do their job.

In patients who have HIV, the virus destroys helper T cells. In cancer patients, helper T cells also are affected. Among a tumor's insidious properties is its ability to prevent killer T cells from attacking tumors. It does this by putting helper T cells into a suppressed stage, limiting their ability to assist CD8 T cells, said Andrew Zloza, MD, PhD, one of the leading authors of the study.

In the study, snippets of DNA were delivered into skin instructor cells by a device known as a gene gun. The DNA directed the instructor cells to produce specific proteins, which act like molecular keys. When CD8 T cells interact with the instructor cells, the keys unlock the CD8 T cells' killer properties -- jumpstarting them to go out and kill pathogens and cancer cells.

With the use of this technique, the killer T cells would not need the assistance of helper T cells. So even if a tumor were to put the helper T cells in a suppressive cage, the killer T cells would still be able to go out and kill cancer cells. Researchers expect that future studies using the technique will make it applicable to many diseases, including cancer.

The study received major funding from the national office of the American Cancer Society, the Illinois chapter of the American Cancer Society and the National Institutes of Health.

Other authors are Frederick Kohlhapp (co-first author), Gretchen Lyons (co-first author), Jason Schenkel, Tamson Moore, Andrew Lacek, Jeremy O'Sullivan, Vineeth Varanasi, Jesse Williams, Michael Jagoda, Emily Bellavance, Amanda Marzo, Paul Thomas, Biljana Zafirova, Bojan Polic, Lena Al-Harthi and Anne Sperling.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>