Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research institutes from Finland and Singapore develop remote healthcare services

05.12.2007
New technology offers a considerable savings potential for healthcare

VTT Technical Research Centre of Finland and A*STAR Agency for Science, Technology and Research from Singapore have developed remote healthcare services that allow patients to be treated globally independent of time and location and irrespective of the solutions provided by hardware and data system suppliers. In Finland, the first trial services for treating cardiac patients and patients suffering from chronic illnesses have been promising. Concurrently, A*STAR kick-started its trial in Singapore on the monitoring of sleep pattern of senior patients and gathered results for deeper analysis by physicians.

For VTT, the new remote healthcare service has been tested during the autumn for treating cardiac patients in Finland. In addition to VTT and Emtele Oy, Comptel Oyj and the Cardiology Centre of the Pirkanmaa Hospital District have participated in the trials. Emtele Oy provides a new business concept for data management services.

The IT service is based on a standards-compliant data traffic and management platform, to which the health monitoring and measuring instruments of different manufacturers can be connected in an interoperable manner. The Internet-based service platform GHMP (Global Health Monitoring Platform) enables remote healthcare services provided across organisational boundaries, time zones and country borders. All the parties in the value chain are required in implementing the service: the measuring instrument supplier, service operator, the supplier of data processing applications and the consultant physician service.

The trial, carried out in the area of operation of the Tampere Cardiology Centre, also has the involvement of the local Health Centre and Emergency Outpatient Clinic; they can send the patient's EKG graph and a consultation request to the on-duty cardiologist at the Cardiology Centre. The consultant cardiologist is informed about the consultation request by e-mail, allowing him/her to analyse the EKG graph at his/her workstation.

Attached to the request, the cardiologist receives the patients background details to assist in drawing up the consultant's report. Combining these with the EKG findings, the consultant makes the initial diagnosis and a recommendation for the patient's treatment. The consultation request and reply are entered on electronic forms that can be attached to the electronic patient record. In the remote service trial, the consultation request is conveyed to the expert via the PIR document service developed by VTT. The EKG graph is analysed in the digital EKG archive of the Laboratory Centre of the Pirkanmaa Hospital District. The consultation form has not been integrated in the electronic patient record as yet.

In Finland, the initial experience of the tested consultation services is positive. During the very first weeks of the trial, cases of arrhythmia were diagnosed, medication amended and high-risk patients were identified following consultations.

It is likely that remote care will allow limited healthcare resources to be allocated more systematically. Experience gained in other countries from remote consultations by cardiologists is encouraging.

Besides acute cardiac monitoring, the GHMP system can be utilised in other healthcare areas as well. This is intended to be demonstrated in the use-case scenario studied by A*STAR, where the objective is to monitor the sleep activity pattern of elderly patients in order to assess patients' quality of sleep. It has been established that sleep is closely related to physical wellbeing, and disturbed sleep patterns have been shown to be linked to medical conditions such as stress and cardiovascular diseases.

In this trial, a patient would wear an accelerometer sensor for extensive periods each day. Activity data is transmitted continuously using a Bluetooth interface to a 3G-enabled phone which is placed in the proximity of the patient's location. The mobile phone connects to the internet and to the server located within A*STAR using 3G or GPRS connectivity.

A*STAR has developed intelligent algorithms on smart phones which are capable of capturing activity signals received from the wearable sensors. This information can be accessed anytime, anywhere via a password protected web portal. During the trial, the collection of information is carried out at the server residing in A*STAR. The server will eventually be replaced with the GHMP system, with the physiological signals relayed over the internet. This realises the objective the project sets out to achieve, which is, enabling remote healthcare services to transcend across geographical borders and time zones.

It is hoped that the pilot trial carried out by A*STAR in Singapore will provide a substantial pool of results for deeper analysis of the relationship between disturbed sleep patterns and certain medical conditions.

VTT and A*STAR will continue to explore new potential areas for collaboration in eHealth, such as text mining of medical annotation and mining of genetic information, eHealth services, cardiac and video monitoring systems for home care or mobile care systems, leveraging on the foundation established to bring R&D co-operation to the next level.

Remote monitoring systems combined with a well-functioning healthcare organisation will improve the quality of life of patients in need of regular monitoring by a doctor, because treatment does not always require a stay in the hospital. Some patients suffering from chronic illnesses can be treated at home, without having to occupy hospital beds. The contribution and expertise of healthcare personnel can be focused on those really in need of help.

IT solutions will help with the increasing need for services in healthcare. People are seeking more individual treatments and better service. At the same time, the ageing population and chronic illnesses considerably increase the number of treatment sessions and healthcare expenditure.

Press Office | alfa
Further information:
http://www.a-star.edu.sg
http://www.vtt.fi

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>