Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the road to a new cancer therapy - starving the tumor

02.11.2007
Cancer is the major cause of death among men. Based on the current trends, scientists predict that, by about 2010, cancer will be the No. 1 cause of death for women as well.

VIB scientists connected to the Katholieke Universiteit Leuven, in collaboration with the Flemish biotech company ThromboGenics, have been studying the anti-cancer action of anti-PLGF.

This substance appears not only to be successful in the treatment of tumors for which the current therapies fail, but it also contributes to the greater effectiveness of existing chemotherapy, and still without side effects. Thus, anti-PLGF might possibly form the basis for a new treatment for cancer. This new finding, which is extremely important, was published in one of the most prestigious journals: CELL.

What is cancer?

Our body is built of billions of cells. Old or damaged cells are continuously being replaced, and cell division is strictly controlled, with new cells produced only as they are needed. However, this is not the case with cancer cells: cancer cells know how to circumvent the control system and go on multiplying out of control. The proliferating cells spread to surrounding tissue or are carried to other tissues and organs via the blood or the lymph system. This seriously disrupts our body’s vital functions - often with deadly consequences.

Blood vessel formation (or angiogenesis)

Every developing tissue is supplied with oxygen and nutrients via our blood vessels. But tumors grow much more quickly than normal tissues and so they have a greater need of nutrients. This is why, at a certain moment, tumor cells produce growth factors. These growth factors stimulate the formation of blood vessels that feed the tumor cells. In this way, even the innermost part of the tumor is supplied with nutrients.

Curbing blood vessel formation as a treatment for cancer

Peter Carmeliet and his colleagues are using this knowledge concerning the formation of blood vessels, or angiogenesis, to develop new therapies for cancer. Indeed, when the formation of blood vessels that feed tumor cells is blocked, the tumor starves due to the lack of oxygen and nutrients. The existing anti-angiogenesis drugs eliminate the most important angiogenetic growth factor. Unfortunately, this treatment induces side effects, and in addition the cancer compensates by producing other growth factors, so that the drug loses it effect. Therefore, new anti-angiogenesis treatments are needed urgently.

For several years now, the VIB researchers have been investigating a new angiogenetic growth factor: the placental growth factor, or PLGF. Oddly enough, PLGF only stimulates blood vessel formation in cancer and other diseases, but not in a fetus, young children or pregnant women.

New cancer therapy?

VIB researcher Christian Fischer and his colleagues - under the direction of Peter Carmeliet and in close collaboration with the biotech company ThromboGenics directed by Désiré Collen - have been studying the therapeutic possibilities of anti-PLGF, which retards the action of PLGF. Anti-PLGF not only increases the effectiveness of chemotherapy and the current anti-angiogenesis therapy, but it also inhibits the growth and metastasis of tumors that are resistant to existing drugs. In contrast to the current therapies, anti-PLGF does not trigger a ‘rescue operation’ in which other growth factors are produced as compensation. Another very important consideration is that anti-PLGF induces absolutely no side effects.

The favorable evaluation of anti-PLGF as a potential cancer treatment raises hope for a more effective cancer therapy with fewer side effects - which can be used with children and pregnant women, too. Furthermore, new results indicate that anti-PLGF can also be useful for the treatment of diseases of the eye that lead to blindness. ThromboGenics is focusing on the further development of anti-PLGF as a therapy. The company wants to begin the first clinical tests by the end of this year.

3D animation

Via www.youtube.com/watch?v=_ZEysIhDsok you can find a 3D animation which clearly shows the described research. Ask a high resolution version before November 1st via evy.vierstraete@vib.be.

Funding
This research has been funded by: the EC, ThromboGenics NV and BioInvent, Bristol-Myers-Squibb, German Research Foundation, AACR, EMBO, FWO, Leducq Foundation, Belgian Science Policy, DKH, GOA, IWT and FP-6-Angiostop, and VIB.

This research has been conducted by Christian Fischer and colleagues in Peter Carmeliet’s ‘Functional genomics of cardiovascular and neurovascular biology and disease’ research group in the VIB Department of Transgene Technology and Gene Therapy, K.U.Leuven – under the direction of Désiré Collen, who is also the CEO of ThromboGenics.

(For more info, see:
www.vib.be/Research/EN/Research+Departments/Department+of+Transgene+
Technology+and+Gene+Therapy/Peter+Carmeliet)

Evy Vierstraete | alfa
Further information:
http://www.vib.be
http://www.youtube.com/watch?v=_ZEysIhDsok

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>