Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new peptide communication factor enabling bacteria to ‘talk to each other’

Discovery by Hebrew University of Jerusalem researchers of a new communication factor that enables bacteria to “talk to each other” and causes their death could have significant consequences leading to development of a new class of antibiotic medications.

Bacteria are traditionally considered unicellular organisms. However, increasing experimental evidence indicates that bacteria seldom behave as isolated organisms. Instead, they are members of a community in which the isolated organisms communicate among themselves, thereby manifesting some multi-cellular behaviors.

In an article published Friday (Oct. 26) in the journal Science, the Hebrew University scientists describe the new communication factor they have discovered that is produced by the intestinal bacteria Escherichia coli. The new factor is secreted by the bacteria and serves as a communication signal between single bacterial cells.

The research was carried out by a group headed by Prof. Hanna Engelberg-Kulka of the Department of Molecular Biology at the Hebrew University –Hadassah Medical School. It includes Ph.D. student Ilana Kolodkin-Gal , and a previous Ph.D. student, Dr Ronen Hazan. In addition, the research included Dr Ariel Gaathon from the Facilities Unit of the Medical School.

The communication factor formed by Escherichia coli enables the activation of a built-in “suicide module” which is located on the bacterial chromosome and is esponsible for bacterial cell death under stressful conditions. Therefore, the new factor has been designated EDF (Extra-cellular Death Factor).

While suicidal cell death is counterproductive for the individual bacterial cell, it becomes effective for the bacterial community as a whole by the simultaneous action of a group of cells that are signaled by EDF. Under stressful conditions in which the EDF is activated, a major sub-population within the bacterial culture dies, allowing the survival of the population as a whole.

Understanding how the EDF functions may provide a lead for a new and more efficient class of antibiotics that specifically trigger bacterial cell death in the intestine bacteria Escherichia coli and probably in many other bacteria, including those pathogens that also carry the “suicide module.”

The discovered communication factor is a novel biological molecule, noted Prof Engelberg-Kulka. It is a peptide (a very small protein) that is produced by the bacteria. The chemical characterization of the new communication factor was particularly difficult for the researchers because of two main reasons: it is present in the bacterial culture in minute amounts, and the factor decomposes under the conditions that are routinely used during standard chemical characterization methods. Therefore, it was necessary to develop a new specific method. The research has also identified several bacterial genes that are involved in the generation of the communication factor, said Prof. Engelberg-Kulka. .

The research on this project was supported by the Israel Science Foundation (ISF), the U.S.-Israel Binational Science Foundation (BSF), and the American National Institutes of Health (NIH).

Jerry Barach | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>