Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical engineers use electric pulses to destroy cancer cells

09.07.2007
A team of biomedical engineers at Virginia Tech and the University of California at Berkeley has developed a new minimally invasive method of treating cancer, and they anticipate clinical trials on individuals with prostate cancer will begin soon.

The process, called irreversible electroporation (IRE), was invented by two engineers, Rafael V. Davalos, a faculty member of the Virginia Tech–Wake Forest University School of Biomedical Engineering and Science (SBES), and Boris Rubinsky, a bioengineering professor at the University of California, Berkeley.

Electroporation is a phenomenon known for decades that increases the permeability of a cell from none to a reversible opening to an irreversible opening. With the latter, the cell will die. What Davalos and Rubinsky did was apply this irreversible concept to the targeting of cancer cells.

“IRE removes tumors by irreversibly opening tumor cells through a series of short intense electric pulses from small electrodes placed in or around the body,” said Davalos, who is the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer or Scientist. “This application creates permanent openings in the pores in the cells of the undesirable tissue. The openings eventually lead to the death of the cells without the use of potentially harmful chemotherapeutic drugs.”

The researchers successfully ablated tissue using the IRE pulses in the livers of male Sprague-Dawley rats. “We did not use any drugs, the cells were destroyed, and the vessel architecture was preserved,” Davalos said. This work was completed with three additional colleagues, Lluis Mir, director of the Laboratory of Vectorology and Gene Transfer Research of the Institut Gustave Roussy, the leading cancer research center in Europe, and of the Centre National de la Recherche Scientifique (CNRS); Liana Horowitz, a visiting scientist at UC-Berkeley; and Jon F. Edd, a doctoral candidate at UC-Berkeley. They reported the in vivo experiments in the June 2006 IEEE Transactions on Biomedical Engineering.

Oncologists already use a variety of methods to destroy tumors using heat or freezing processes, but these current techniques can damage healthy tissue or leave malignant cells. The difference with IRE is Davalos and Rubinsky were able to adjust the electrical current and reliably kill the targeted cells. “The reliable killing of a targeted area with cellular scale resolution without affecting surrounding tissue or nearby blood vessels is key,” Davalos said.

Now, an article by Davalos on IRE is being featured in a special issue of Technology in Cancer Research and Treatment (www.tcrt.org) dedicated to this new field. Rubinsky, who earned his Ph.D. from the Massachusetts Institute of Technology, is the guest editor for this special issue, to be published in August, 2007.

At Virginia Tech, Davalos directs the interdisciplinary Bioelectromechanical Systems Laboratory, part of the university’s Institute for Critical Technology and Applied Science (ICTAS), of which SBES is a core member. In the Bioelectromechanical Systems Laboratory, other research projects associated with utilizing the physical and electrical characteristics of cells, such as engineering methods for microfluidic single cell analysis, selective cell concentration, and image-guided surgery, broaden the understanding and potential of the field of IRE.

“IRE shows remarkable promise as a “minimally invasive, inexpensive surgical technique to treat cancer. It has the advantages that it is easy to apply, is not affected by local blood flow, and can be monitored and controlled using electrical impedance tomography,” Davalos said. He and other researchers will continue to advance this promising method to treat cancer.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>