Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the treatment of Parkinson's disease possible with a new neurotrophic factor in the future?

05.07.2007
Parkinson’s disease is a degenerative brain disease characterized by the loss of dopamine neurons in the midbrain-area called Substantia Nigra. The research group led by professor Mart Saarma, Director of the Institute of Biotechnology, University of Helsinki, has discovered a novel neurotrophic factor CDNF (Conserved Dopamine Neurotrophic Factor). CDNF was shown to protect and even rescue damaged dopamine neurons in an experimental model of Parkinson’s disease in studies performed by the research group of professor Raimo K. Tuominen, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. More importantly, also the function of the neurons was recovered after an experimental lesion of the dopamine neurons in Substantia Nigra.

The findings of this research may be of great importance for the development of new treatment strategies for Parkinson’s disease. The results of this study will be published in “Nature” on July 5th, 2007.

Approximately one percent of people aged over 60 get Parkinson’s disease all over the World. The demographic change with increasing number of elderly people will lead in doubling of the number of Parkinsonian patients also in Finland during 2005 – 2030. Typical symptoms in Parkinson’s disease are those of muscle rigidity, tremor, and slowness of movement. They are a consequence of the degeneration of dopamine nerves projecting from Substantia Nigra to Caudate Putamen (also called Striatum). The clinical symptoms manifest when approximately 70 % of the dopamine nerves have been destroyed. Degeneration of the dopamine nerves progresses slowly, and in time the difficulties in movement becomes a major factor reducing the quality of life of these patients.

Current drug treatment of Parkinson’s disease aims at increasing dopamine concentration and / or activation of dopamine receptors in the brain. Due to the progression of the nerve degeneration the drug therapy gradually becomes less effective. Neurotrophic factors which could slow down or even halt the progression of the degeneration of dopamine nerves have been in the focus as a possible new treatment for Parkinson’s disease. Glial cell- line derived neurotrophic fctor (GDNF) is one example of such a promising growth factor. Indeed, it was shown to have beneficial effects in a clinical trial in Parkinsonian patients suffering from severe symptoms. However, due to adverse effects the clinical trials have been stopped, even though some of the patients would have continued the therapy. Even so, the clinical trials on GDNF gave the proof of concept for the use of neurotrophic factorstreatment of neurodegenerative diseases. Therefore it is very important to search for new growth factors with similar efficacy as GDNF, but with better tolerability.

Conserved dopamine neurotrophic (CDNF) factor discovered and characterized in this study is well conserved in the evolution. It belongs to a CDNF/MANF family of proteins, which is the first evolutionarily conserved family of neurotrophic factors having a representative also in invertebrate animals (MANF = mesencephalic astrocyte derived neurotrophic factor).

In an experimental model of Parkinson’s disease, a neurotoxin 6-OHDA was injected on one side of the brain into the striatum of rats. This toxin causes a progressive degeneration of dopamine nerves similar to that observed in Parkinsons disease. Upon activation of dopamine nerves of the brain by drugs, these animals show a movement disorder, a circling behaviour, which reflects an imbalance of dopamine activity of the brain hemispheres.

A single injection of CDNF six hours before the toxin delivery into the striatum significantly prevented the degeneration of dopamine nerves in the brain and also the turning behavior was normalized. When administered four weeks after the toxin, situation mimicking a progression of the nerve degeneration in patients, injection of CDNF into Striatum was able to prevent the degeneration of dopaminergic neurons and cure the behavioral imbalance.

The results of the present study show that CDNF is a very promising new neurotrophic factor with a significant neuroprotective and neurorestorative effects on dopamine nerves in the brain. It may have significant potential in the treatment of Parkinson’s disease in the future as a neuro protective or even neurorestorative therapy.

Mart Saarma | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>