Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medical implants should react with the body, not seek to be inert

04.07.2007
Research News from Polymer International

A world leader in medical implants calls for a rethink in our approach to building medical implants.

Currently so-called biomaterials are chosen because they are reasonably successful at hiding from the body’s immune system, and are consequently not rejected. All the same, within a month of implanting them, the body isolates implants by wrapping them in a collagenous, avascular sac. Materials are considered to be ‘biocompatible’ if this sac is not too thick.

“That’s not very clever,” says Professor Buddy Ratner, Director of the University of Washington Engineered Biomaterials, in Seattle, USA. In a commentary published in Polymer International, he says that it is time to take a more intelligent approach.

Rather than building implants out of materials that try to hide from the body’s systems, he believes that we should be creating them from materials that are specifically designed to engage with biological processes. This could take the form of materials made with specifically sized pores that encourage small blood vessels to actively grow through the implant, or implants coated with DNA that specifically prevents formation of the collagenous capsule.

Both of these let the implant and the body actively work together, rather than simply try to prevent them fighting against each other.

Ratner looks forward to an exciting future. “These sorts of ideas will lead to a new biomaterials science that will permit us to make materials for medical devices that function better, last longer, encourage healing and provide enhanced patient satisfaction,” says Ratner.

Jennifer Beal | alfa
Further information:
http://www.interscience.wiley.com/polymerinternational

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>