Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medical implants should react with the body, not seek to be inert

04.07.2007
Research News from Polymer International

A world leader in medical implants calls for a rethink in our approach to building medical implants.

Currently so-called biomaterials are chosen because they are reasonably successful at hiding from the body’s immune system, and are consequently not rejected. All the same, within a month of implanting them, the body isolates implants by wrapping them in a collagenous, avascular sac. Materials are considered to be ‘biocompatible’ if this sac is not too thick.

“That’s not very clever,” says Professor Buddy Ratner, Director of the University of Washington Engineered Biomaterials, in Seattle, USA. In a commentary published in Polymer International, he says that it is time to take a more intelligent approach.

Rather than building implants out of materials that try to hide from the body’s systems, he believes that we should be creating them from materials that are specifically designed to engage with biological processes. This could take the form of materials made with specifically sized pores that encourage small blood vessels to actively grow through the implant, or implants coated with DNA that specifically prevents formation of the collagenous capsule.

Both of these let the implant and the body actively work together, rather than simply try to prevent them fighting against each other.

Ratner looks forward to an exciting future. “These sorts of ideas will lead to a new biomaterials science that will permit us to make materials for medical devices that function better, last longer, encourage healing and provide enhanced patient satisfaction,” says Ratner.

Jennifer Beal | alfa
Further information:
http://www.interscience.wiley.com/polymerinternational

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>