Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lab-on-a-chip monitors effect of medication on individual cancer cells

11.06.2007
Monitoring the effect of medication on cancer cells can now take place before treatment and outside of the body, using a special microfluidic chip developed by the Lab-on-a-Chip group of the MESA+ Institute for Nanotechnology, University of Twente, The Netherlands. According to scientist Floor Wolbers, this enables doctors to choose the most efficient type and dose of medication, targeted at a specific type of cancer cell.

The new ‘apoptosis chip’ opens up new possibilities in the diagnosis and treatment of cancer. Just a limited number of cells is required for the analysis, without the need of an operative biopsy. An individual cell can now be monitored when medication is added. Cell culture of millions of cells, with risk of cellular modification, is not necessary using this new method. The chip itself can be made of a relatively cheap and disposable material and meets the high standards of medical use.

Floor Wolbers has done on-chip research of the process called apoptosis, both of healthy cells and breast cancer cells. The major difference is the occurance of ‘anoikis’: dying cells leaving their colony when they die. Cancer cells may release themselves but this doesn’t lead to their death: they metastase elsewhere.

This difference between healthy cells and cancer cells can clearly be seen in the on-chip experiments. Healthy endothelium cells, in the presence of TNF-alpha, show the characteristics of apoptosis and then start to release themselves, dying in the end. Breast cancer cells under the influence of the same substance start showing apoptosis but when they do move away, they don’t necessarily die: there is no anoikis. This is particularly the case for breast cancer cells treated with tamoxifen, which is a common hormone treatment. This clearly shows the specific nature of treatment and dose, and on-chip monitoring will enable a fast comparison of different cell types and cytostatics.

The new technique can already be applied in a clinical setting. At present, the process is monitored using an optical microscope, for high-throughput screening, electronics can be added to the chip. Using multiple chambers for cell culture, fast comparison will be possible.

Floor Wolbers, who defends her PhD-thesis ‘Apoptosis chip for drug screening’ on the 8th of June, 2007, has closely cooperated with the hospital Medisch Spectrum Twente in Enschede, with the gynaecologist dr. H.R. Franke and the clinical chemistry lab of prof.dr. I. Vermes.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>