Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine hope for malaria

24.05.2007
One person dies of it every 30 seconds, it rivals HIV and tuberculosis as the world’s most deadly infection and the vast majority of its victims are under five years old. Now, just over 100 years since Britain’s Sir Ronald Ross was awarded the Nobel Prize for finally proving that malaria is transmitted by mosquitoes, researchers at The University of Nottingham believe they have made a significant breakthrough in the search for an effective vaccine.

Malaria infects around 400 million people every year and kills between one and three million, mostly children.

Dr Richard Pleass, from the Institute of Genetics, said: “Our results are very, very significant. We have made the best possible animal model you can get in the absence of working on humans or higher primates, as well as developing a novel therapeutic entity.”

Using blood from a group of people with natural immunity to the disease, a team from the School of Biology refined and strengthened the antibodies using a new animal testing system which, for the first time, mimics in mice the way malaria infects humans. When injected into mice, these antibodies protected them against the disease.

The World Health Organisation (WHO) says malaria is a public health problem in more than 90 countries and describes it as by far the world's most important tropical parasitic disease. It kills more people than any other communicable disease except tuberculosis and more than 90 per cent of all malaria cases are in sub-Saharan Africa. According to WHO, the dream of the global eradication of malaria is beginning to fade with the growing number of cases, rapid spread of drug resistance in people and increasing insecticide resistance in mosquitoes.

Until now there has been no reliable animal model for human malaria. Mice do not get sick when infected with the blood-borne parasite that causes malaria in people. And the immune system of mice shows a different response to humans when it comes into contact with the parasite.

This meant that despite making a promising antibody vaccine that worked against the parasite in a lab dish, the team could not test it in a living animal.

In a new study published in the journal PLoS Pathogens an open access journal published by the Public Library of Science — Dr Pleass and his collaborators in London, Australia and The Netherlands describe how they got around the problem by creating a mouse model of the human malaria infection. They took a closely related mouse parasite and genetically modified it to produce an antigen that the human immune system recognises.

Next, they genetically altered the mouse’s immune system to produce a “human molecule” on its white blood cells that recognises the parasite and, together with antibodies, destroys it. In trials the team showed that human antibodies given to the mice protected them from the parasite.

The team, who were funded by the Medical Research Council and the European Union, are now hoping to refine the model with a view to starting the first phase of clinical trials in humans.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>