Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine hope for malaria

24.05.2007
One person dies of it every 30 seconds, it rivals HIV and tuberculosis as the world’s most deadly infection and the vast majority of its victims are under five years old. Now, just over 100 years since Britain’s Sir Ronald Ross was awarded the Nobel Prize for finally proving that malaria is transmitted by mosquitoes, researchers at The University of Nottingham believe they have made a significant breakthrough in the search for an effective vaccine.

Malaria infects around 400 million people every year and kills between one and three million, mostly children.

Dr Richard Pleass, from the Institute of Genetics, said: “Our results are very, very significant. We have made the best possible animal model you can get in the absence of working on humans or higher primates, as well as developing a novel therapeutic entity.”

Using blood from a group of people with natural immunity to the disease, a team from the School of Biology refined and strengthened the antibodies using a new animal testing system which, for the first time, mimics in mice the way malaria infects humans. When injected into mice, these antibodies protected them against the disease.

The World Health Organisation (WHO) says malaria is a public health problem in more than 90 countries and describes it as by far the world's most important tropical parasitic disease. It kills more people than any other communicable disease except tuberculosis and more than 90 per cent of all malaria cases are in sub-Saharan Africa. According to WHO, the dream of the global eradication of malaria is beginning to fade with the growing number of cases, rapid spread of drug resistance in people and increasing insecticide resistance in mosquitoes.

Until now there has been no reliable animal model for human malaria. Mice do not get sick when infected with the blood-borne parasite that causes malaria in people. And the immune system of mice shows a different response to humans when it comes into contact with the parasite.

This meant that despite making a promising antibody vaccine that worked against the parasite in a lab dish, the team could not test it in a living animal.

In a new study published in the journal PLoS Pathogens an open access journal published by the Public Library of Science — Dr Pleass and his collaborators in London, Australia and The Netherlands describe how they got around the problem by creating a mouse model of the human malaria infection. They took a closely related mouse parasite and genetically modified it to produce an antigen that the human immune system recognises.

Next, they genetically altered the mouse’s immune system to produce a “human molecule” on its white blood cells that recognises the parasite and, together with antibodies, destroys it. In trials the team showed that human antibodies given to the mice protected them from the parasite.

The team, who were funded by the Medical Research Council and the European Union, are now hoping to refine the model with a view to starting the first phase of clinical trials in humans.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>