Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapies may help some end-stage heart failure patients avoid transplant

09.05.2007
Implanted pumps improved heart function enough in a small percentage of patients awaiting a heart transplant that they were able to leave the hospital without a pump and without a new heart, according to a study in Circulation: Journal of the American Heart Association.

The heart-assist devices also significantly improved the cardiac function in many other heart failure patients.

"This suggests that, while the devices alone may not be sufficient to allow a meaningful number of patients to come off the heart pump instead of having a heart transplant, there may be other therapies that can be added to enhance recovery," said Simon Maybaum, M.D., lead author of the study.

In end-stage heart failure, the heart weakens, gets larger and shows other signs of deterioration. Implantable heart pumps, called left ventricular assist devices (LVADs), pump blood through the body, which lets the heart’s main pumping chamber rest. Pumps are currently approved for two purposes:

To help keep patients with end-stage heart failure alive until a donor heart becomes available for transplantation.

To serve as a long-term therapy for patients deemed unacceptable for a heart transplant.

However, for some time, transplant specialists have debated the potential for LVADs to be used as a "bridge to recovery" for the patient’s own heart. Prior small studies have yielded contrasting results. "Some centers were reporting that up to a third of their patients implanted with a heart pump were able to come off the pump without a transplant, and some centers were saying they just did not have that experience," said Maybaum, associate professor of clinical medicine and medical director of the Center for Advanced Cardiac Therapy at the Albert Einstein College of Medicine’s Montefiore Medical Center in New York City.

To resolve these inconsistent findings, researchers from seven major U.S. heart transplant centers formed the LVAD Working Group. They enrolled 67 patients with end-stage heart failure between August 2001 and October 2003 in the first prospective, multicenter study to extensively examine how LVADs affect cardiac function and exercise capacity over several months.

Patients were recruited from these centers: Baylor College of Medicine, Houston, Texas; Cleveland Clinic Foundation, Ohio; Columbia University, New York City; University of Michigan, Ann Arbor; University of Minnesota, Minneapolis; Temple University, Philadelphia, Penn.; and the Texas Heart Institute, Houston. Four different types of LVADs were used in the study. Researchers evaluated the patients every 30 days after pump implant.

"There are two contrasting, important findings in our study," Maybaum said. "One, the ability to remove an LVAD from a patient with end-stage heart failure was low. Two, there was a high degree of improvement in heart function during the use of the assist device."

Six (9 percent) of the 67 patients had their pump removed without needing a heart transplant. Six others (9 percent) had died by May 2004, when data collection ended.

Yet, after 30 days on the pump, one third of the patients had a left ventricular ejection fraction greater than 40 percent (measured when the pump flow was decreased). Ejection fraction is the percentage of blood pumped out of the left ventricle with each beat. Healthy hearts typically have an ejection fraction of 55 percent to 60 percent, Maybaum said. The proportion of patients showing this degree of improvement then waned, dropping to 27 percent of patients at 60 days, 19 percent at 90 days and 6 percent at 120 days.

Patients also showed progressive improvement in exercise capacity after LVAD implantation. From day 30 to 120 there was an increase in their peak oxygen consumption and how long they could exercise.

Tiny snips of heart tissue from 22 patients taken at implant and at the time of removal of the LVAD prior to transplantation found evidence of important improvements.

The size of the heart muscle cells, the amount of the fibrous collagen and levels of the protein TNF-alpha all decreased significantly between pump implant and heart transplant — signs of reduced heart damage.

"We now have a much more reliable description of the natural history of the changes in heart function during LVAD support," Maybaum said. "That makes us optimistic that other strategies may allow us to further improve cardiac function."

Two novel strategies will soon be tested in clinical trials for LVAD patients in the U.S. One study will utilize the muscle bulking agent clenbuterol and the second will evaluate autologous (the patient’s own) stem cells injected at the time of LVAD implantation.

Karen Astle | EurekAlert!
Further information:
http://www.heart.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>