Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Testing Could Identify HIV Patients At Risk Of Hypersensitivty To HIV Drug

01.03.2002


HIV patients at risk of a potentially fatal hypersensitive reaction to the antiretroviral drug abacavir could be identified by genetic testing before drug therapy has started, suggest authors of a fast-track study in this week’s issue of THE LANCET.



The use of the HIV antiretroviral drug abacavir, a potent HIV-1 nucleoside-analogue reverse-transcriptase inhibitor, is complicated by a potentially life-threatening hypersensitivity syndrome in about 5% of cases. Genetic factors influencing the immune response to abacavir might result in some individuals being more susceptible to a hypersensitive reaction than other patients.

Simon Mallal and colleagues from the Royal Perth Hospital, Australia, studied 200 HIV patients treated with abacavir. They focused on analysis of the MHC genes that are known to be associated with the immune response.


Abacavir hypersensitivity was identified in 18 patients, and drug tolerance was confirmed in 167 patients after 6 weeks of therapy. Patients with the allele (gene component) HLA-B*5701 were over 100 times more likely to be hypersensitive to abacavir; this allele was present in 14 (78%) of the 18 patients with abacavir hypersensitivity, and in four (2%) of the 167 abacavir-tolerant patients. The genetic region marked by the combination HLA-B*5701, HLA-DR7, and HLA-DQ3 (the 57.1 ancestral haplotype) was present in 13 (72%) hypersensitive patients and none of the tolerant patients. All patients with the full 57.1 ancestral haplotype experienced abacavir hypersensitivity.

Simon Mallal comments: “The findings have important clinical implications. In our population, withholding abacavir in patients with this haplotype would be expected to reduce the prevalence of this potentially life-threatening event from 9% to 2.5 % without inappropriately denying the drug to any patients. Based on these data it is our current practice to withhold abacavir in patients who have the HLA-B*5701,-DR7,-DQ3 haplotype. However, before such practice can be taken up by others it is essential that the association between HLA type and abacavir hypersensitivity in their own populations is assessed.”

He adds: “However, there were four patients in the study who developed abacavir hypersensitivity in whom no part of the susceptibility haplotype could be identified. Therefore, HLA typing at these alleles could not be used to completely exclude the risk of a future reaction, and the current clinical approach of high vigilance for these reactions must continue.”

In an accompanying Commentary (p 722), Amalio Telenti from University Hospital, Lausanne, Switzerland,concludes: “From recent developments in human genetics, a need for a more comprehensive analysis, including dozens or hundreds of genes, can be predicted. This analysis may become feasible by use of microarrays that allow interrogation of multiple genes simultaneously. Decisions about the best time to start therapy, and the most effective and least toxic drug combinations, may be based on particular genotype profiles. This projection may look far-fetched, with just a few relevant genes identified, but these are the first drops before a downpour.”

Richard Lane | alphagalileo

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>