Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Researchers Discover a New Mechanism Involved in Predisposition to Cancer

26.02.2002


A team of researchers at the Universitat Autònoma de Barcelona (UAB) has discovered a new mechanism that accelerates the shortening of telomeres (structures that protect the ends of chromosomes) involved in genetic instability and a predisposition to cancer. The research has been published in the journal Human Molecular Genetics.



DNA in higher organisms is organised into individual chromosomes, the ends of which are protected by structures called telomeres. Telomeres are very important in maintaining the cells’ genetic integrity, as they prevent the chromosomes from joining together, protect their ends from degradation and are involved in segregating chromosomes properly during cellular division. They also play a decisive role in two fields that are very important in social and biological terms: cancer and ageing. Telomeres gradually shorten and thus indicate the point at which the cell dies and control the proper proliferation of tissues.

For the first time, a team of researchers at the Universitat Autònoma de Barcelona has observed that telomeres may shorten more quickly due to sudden breakages in the DNA sequence that they consist of. The scientists made this discovery by analysing cells from a genetic syndrome called Fanconi’s anaemia, which is typified by a high genetic instability and chromosomal fragility, and which causes a very high predisposition to contracting cancer in harbourers (a risk of leukaemia 15,000 times higher than in a healthy person). The researchers have observed that the telomeres of affected patients present an accelerated shortening owing to breakages in the telomeric DNA sequence, leading to chromosomes being unprotected and joining together. This mechanism may explain patients’ symtomatology and their tendency to contract cancer. The research thus provides a first experimental link between a predisposition to cancer with the mechanism of sudden shortening of telomeres.


Fanconi’s anaemia came to public notice a little over a year ago (4th October 2000) when the parents of a patient (Molly Nash) genetically selected an embryo so that the newborn baby could become a donor of histocompatible blood for a bone marrow transplant to the infant’s elder sibling.

The interdisciplinary research has been published in Human Molecular Genetics, one of the most prestigious journals on human genetics, and was carried out by the Research Fellow Elsa Callén, under the supervision of Dr. Jordi Surrallés, the Mutagenesis Group “Ramón y Cajal” Researcher in the genetics and Microbiology Department of the UAB, in co-operation with the Spanish National Biotechnology Centre, the Vall d’Hebron Hospital and the Hospital de la Santa Creu i Sant Pau in Barcelona. The study was carried out within the framework of a scientific collaboration agreement between the UAB and the Fanconi Anaemia Research Fund, Inc. in Oregon (USA) and was supported by the Ministry of Health and Consumption Fund for Health Research.

Octavi López Coronado | alphagalileo
Further information:
http://www.uab.es/actualitat/notrecerca/surralles0202.htm

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>