Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Researchers Discover a New Mechanism Involved in Predisposition to Cancer

26.02.2002


A team of researchers at the Universitat Autònoma de Barcelona (UAB) has discovered a new mechanism that accelerates the shortening of telomeres (structures that protect the ends of chromosomes) involved in genetic instability and a predisposition to cancer. The research has been published in the journal Human Molecular Genetics.



DNA in higher organisms is organised into individual chromosomes, the ends of which are protected by structures called telomeres. Telomeres are very important in maintaining the cells’ genetic integrity, as they prevent the chromosomes from joining together, protect their ends from degradation and are involved in segregating chromosomes properly during cellular division. They also play a decisive role in two fields that are very important in social and biological terms: cancer and ageing. Telomeres gradually shorten and thus indicate the point at which the cell dies and control the proper proliferation of tissues.

For the first time, a team of researchers at the Universitat Autònoma de Barcelona has observed that telomeres may shorten more quickly due to sudden breakages in the DNA sequence that they consist of. The scientists made this discovery by analysing cells from a genetic syndrome called Fanconi’s anaemia, which is typified by a high genetic instability and chromosomal fragility, and which causes a very high predisposition to contracting cancer in harbourers (a risk of leukaemia 15,000 times higher than in a healthy person). The researchers have observed that the telomeres of affected patients present an accelerated shortening owing to breakages in the telomeric DNA sequence, leading to chromosomes being unprotected and joining together. This mechanism may explain patients’ symtomatology and their tendency to contract cancer. The research thus provides a first experimental link between a predisposition to cancer with the mechanism of sudden shortening of telomeres.


Fanconi’s anaemia came to public notice a little over a year ago (4th October 2000) when the parents of a patient (Molly Nash) genetically selected an embryo so that the newborn baby could become a donor of histocompatible blood for a bone marrow transplant to the infant’s elder sibling.

The interdisciplinary research has been published in Human Molecular Genetics, one of the most prestigious journals on human genetics, and was carried out by the Research Fellow Elsa Callén, under the supervision of Dr. Jordi Surrallés, the Mutagenesis Group “Ramón y Cajal” Researcher in the genetics and Microbiology Department of the UAB, in co-operation with the Spanish National Biotechnology Centre, the Vall d’Hebron Hospital and the Hospital de la Santa Creu i Sant Pau in Barcelona. The study was carried out within the framework of a scientific collaboration agreement between the UAB and the Fanconi Anaemia Research Fund, Inc. in Oregon (USA) and was supported by the Ministry of Health and Consumption Fund for Health Research.

Octavi López Coronado | alphagalileo
Further information:
http://www.uab.es/actualitat/notrecerca/surralles0202.htm

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>