Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Researchers Discover a New Mechanism Involved in Predisposition to Cancer

26.02.2002


A team of researchers at the Universitat Autònoma de Barcelona (UAB) has discovered a new mechanism that accelerates the shortening of telomeres (structures that protect the ends of chromosomes) involved in genetic instability and a predisposition to cancer. The research has been published in the journal Human Molecular Genetics.



DNA in higher organisms is organised into individual chromosomes, the ends of which are protected by structures called telomeres. Telomeres are very important in maintaining the cells’ genetic integrity, as they prevent the chromosomes from joining together, protect their ends from degradation and are involved in segregating chromosomes properly during cellular division. They also play a decisive role in two fields that are very important in social and biological terms: cancer and ageing. Telomeres gradually shorten and thus indicate the point at which the cell dies and control the proper proliferation of tissues.

For the first time, a team of researchers at the Universitat Autònoma de Barcelona has observed that telomeres may shorten more quickly due to sudden breakages in the DNA sequence that they consist of. The scientists made this discovery by analysing cells from a genetic syndrome called Fanconi’s anaemia, which is typified by a high genetic instability and chromosomal fragility, and which causes a very high predisposition to contracting cancer in harbourers (a risk of leukaemia 15,000 times higher than in a healthy person). The researchers have observed that the telomeres of affected patients present an accelerated shortening owing to breakages in the telomeric DNA sequence, leading to chromosomes being unprotected and joining together. This mechanism may explain patients’ symtomatology and their tendency to contract cancer. The research thus provides a first experimental link between a predisposition to cancer with the mechanism of sudden shortening of telomeres.


Fanconi’s anaemia came to public notice a little over a year ago (4th October 2000) when the parents of a patient (Molly Nash) genetically selected an embryo so that the newborn baby could become a donor of histocompatible blood for a bone marrow transplant to the infant’s elder sibling.

The interdisciplinary research has been published in Human Molecular Genetics, one of the most prestigious journals on human genetics, and was carried out by the Research Fellow Elsa Callén, under the supervision of Dr. Jordi Surrallés, the Mutagenesis Group “Ramón y Cajal” Researcher in the genetics and Microbiology Department of the UAB, in co-operation with the Spanish National Biotechnology Centre, the Vall d’Hebron Hospital and the Hospital de la Santa Creu i Sant Pau in Barcelona. The study was carried out within the framework of a scientific collaboration agreement between the UAB and the Fanconi Anaemia Research Fund, Inc. in Oregon (USA) and was supported by the Ministry of Health and Consumption Fund for Health Research.

Octavi López Coronado | alphagalileo
Further information:
http://www.uab.es/actualitat/notrecerca/surralles0202.htm

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>