Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Researchers Discover a New Mechanism Involved in Predisposition to Cancer

26.02.2002


A team of researchers at the Universitat Autònoma de Barcelona (UAB) has discovered a new mechanism that accelerates the shortening of telomeres (structures that protect the ends of chromosomes) involved in genetic instability and a predisposition to cancer. The research has been published in the journal Human Molecular Genetics.



DNA in higher organisms is organised into individual chromosomes, the ends of which are protected by structures called telomeres. Telomeres are very important in maintaining the cells’ genetic integrity, as they prevent the chromosomes from joining together, protect their ends from degradation and are involved in segregating chromosomes properly during cellular division. They also play a decisive role in two fields that are very important in social and biological terms: cancer and ageing. Telomeres gradually shorten and thus indicate the point at which the cell dies and control the proper proliferation of tissues.

For the first time, a team of researchers at the Universitat Autònoma de Barcelona has observed that telomeres may shorten more quickly due to sudden breakages in the DNA sequence that they consist of. The scientists made this discovery by analysing cells from a genetic syndrome called Fanconi’s anaemia, which is typified by a high genetic instability and chromosomal fragility, and which causes a very high predisposition to contracting cancer in harbourers (a risk of leukaemia 15,000 times higher than in a healthy person). The researchers have observed that the telomeres of affected patients present an accelerated shortening owing to breakages in the telomeric DNA sequence, leading to chromosomes being unprotected and joining together. This mechanism may explain patients’ symtomatology and their tendency to contract cancer. The research thus provides a first experimental link between a predisposition to cancer with the mechanism of sudden shortening of telomeres.


Fanconi’s anaemia came to public notice a little over a year ago (4th October 2000) when the parents of a patient (Molly Nash) genetically selected an embryo so that the newborn baby could become a donor of histocompatible blood for a bone marrow transplant to the infant’s elder sibling.

The interdisciplinary research has been published in Human Molecular Genetics, one of the most prestigious journals on human genetics, and was carried out by the Research Fellow Elsa Callén, under the supervision of Dr. Jordi Surrallés, the Mutagenesis Group “Ramón y Cajal” Researcher in the genetics and Microbiology Department of the UAB, in co-operation with the Spanish National Biotechnology Centre, the Vall d’Hebron Hospital and the Hospital de la Santa Creu i Sant Pau in Barcelona. The study was carried out within the framework of a scientific collaboration agreement between the UAB and the Fanconi Anaemia Research Fund, Inc. in Oregon (USA) and was supported by the Ministry of Health and Consumption Fund for Health Research.

Octavi López Coronado | alphagalileo
Further information:
http://www.uab.es/actualitat/notrecerca/surralles0202.htm

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>