Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irregular heartbeat linked to genetic mutation

26.02.2007
Every day for 10 years, a seemingly heart-healthy 53-year-old woman experienced rapid and irregular heartbeats. She had no personal or family history of hypertension or hyperthyroidism. She did not suffer from myocardial or coronary artery disease, or any abnormalities of the heart as best doctors and medical science could determine. Yet, she complained of heart palpitations and dizziness nearly to the point of fainting.

For the patient in this case study, her symptoms first appeared 10 years ago and they persisted through the years. The symptoms peaked in the morning and occurred more frequently as time went on. Doctors prescribed medication, but it proved to be ineffective.

As a next step, Mayo Clinic physician researchers explored and confirmed the presence of a genetic mutation that clearly established an inherited predisposition to atrial fibrillation.

Their study findings appear in the February issue of Nature Clinical Practice Cardiovascular Medicine (http://www.nature.com/clinicalpractice/cardio).

"Why certain patients develop atrial fibrillation while others do not, despite comparable environmental stress exposure, might ultimately depend on their genetic makeup," the authors write.

Atrial fibrillation is recognized more often in the elderly who have underlying structural heart disease. But in this study, Mayo Clinic researchers address the gene-based form of atrial fibrillation that affects younger people who do not otherwise harbor risk factors for the disease. The case was compared to 2,000 individuals who did not carry the mutation or suffer from atrial fibrillation.

The Mayo Clinic study is the first to identify an atrial fibrillation-associated genetic mutation of the ATP-sensitive potassium (KATP) channel. Researchers uncovered its role as a safeguard against atrial arrhythmia under stress conditions. The fail-safe mechanism present in most people to provide electrical stability to the heart under stress was defective in this patient. The sequencing of KATP channel genes, using genomic DNA extracted from the patient's peripheral white blood cells, revealed a genetic mutation.

The discovery of the genetic mutation's role in contributing to atrial fibrillation may ultimately improve physicians' ability to identify patients who have a hereditary predisposition to atrial fibrillation, which is often complicated by increased risk for stroke and heart failure.

"Our findings support the emerging understanding of atrial fibrillation in younger patients as an inherited disease of ion channels, the building blocks of electrical pathways," says Timothy Olson, M.D., a pediatric cardiologist and lead author of the study.

Because medications were ineffective in this case, the Mayo Clinic team treated the woman's atrial fibrillation by targeting high-energy radio waves to an area of the atrium -- an upper heart chamber -- most vulnerable to stress-induced electrical instability. This approach highlights the capacity to successfully treat patients who have genetic forms of atrial fibrillation.

"This case is a fine example of individualized medicine in practice, highlighting the benefit of translating molecular technology into an understanding of disease processes in the clinical setting," says Andre Terzic, M.D., Ph.D., a cardiologist and senior author of the study.

Amy Reyes | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>