Fungus in hull paint may solve barnacle problem

“The fungus affects the nervous system of barnacles, and you only need a tiny amount of fungal extract to have an effect,” says Hans Elwing, professor at the Department of Cell and Molecular Biology at Göteborg University.

Growths on ships increase friction, which entails higher fuel consumption and more emissions. At Göteborg University there are several research projects on environmentally friendly paints to prevent organisms from attaching on surfaces, so-called anti-foul paints.

The discovery of how this microscopic fungus affects barnacles was made by a research team specializing on surface biophysics. As little as a 0.1-percent mixture of pure fungal extract in paint is sufficient to prevent any growth of acorn barnacles. Previous anti-foul paints have been problematic for the environment since the poison in the paint dissolves and spreads into the water.

“A sensational finding is that the fungal extract is toxic only as long as the paint is on a painted surface. When the paint is dissolved in sea water, the activation of the poison appears not to take place, making the paint apparently harmless to organisms in the open sea,” says Hans Elwing.

The scientists are basing their work on a theory that the fungal extract makes the paint imitate the fungus's natural and environmentally friendly defense against being eaten. Hans Elwing also believes that many other organisms in the sea have developed this type of environmentally friendly protection.

“The discovery that this fungal extract counteracts the growth of barnacles will probably create quite a stir around the world. No naturally occurring substance has previously been shown to have such a dramatic effect on barnacles in combination with being so easily degradable in the environment and probably completely safe for humans,” says Hans Elwing.

Hans Elwing's research team has joined up with SP Technical Research Institute of Sweden in Borås and Stockholm to develop their ideas. It is hoped that innovations in nanotechnology will facilitate the creation of new anti-fouling paints for boats.

“The fungal extract is probably both cheaper and, above all, more environmentally friendly that the paints based on copper compounds available on the market today,” says Hans Elwing.

For more information, please contact: Hans Elwing, professor of surface biotechnology, Department of Cell and Molecular Biology at Göteborg University, cell phone: +46 (0)733-60 46 07; phone: +46 (0)31-786 25 62; e-mail: hans.elwing@gmm.gu.se

Media Contact

Camilla Carlsson idw

More Information:

http://www.yb.gmm.gu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors