Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International consortium to get to heart of coronary artery disease

An international consortium has been launched to tackle coronary artery disease using the latest scientific tools. Funded by the European Commission, the initiative will build on recent advances in genomic science and the understanding of our genes to develop effective strategies for preventing and treating the disease.

Coronary artery disease (CAD) is the most common form of heart disease in Europe and the US. It is caused by a narrowing of the arteries due to deposits of fat and cholesterol, preventing enough blood reaching the heart. Symptoms include chest pain, shortness of breath and numbness in the arms and shoulders, and the disease can lead to heart attack.

However, whilst scientists know that high fat and high cholesterol diets play a significant role in the disease, they do not understand fully what makes some people more susceptible to the disease than others. They believe that many factors contribute, both environmental and genetic.

"Coronary artery disease is a major health issue in the Western world and we want to get to the root of what causes it," says Professor Dominique Gauguier from the Wellcome Trust Centre for Human Genetics at the University of Oxford. "It is a complex disease, so it's impossible to say 'We've found the gene for CAD'. Rather, it is caused by a number of factors, including the interaction of genes with other genes and with the environment."

Professor Gauguier, a Wellcome Trust Senior Research Fellow, is leading an international consortium, known as Functional Genomic Diagnostic Tools for Coronary Artery Disease (FGENTCARD). The project, which has received €3 million over 3 years from the European Commission, involves academic and industrial scientists from the UK, France, Denmark and Lebanon.

The consortium will use the latest technologies for analysing DNA to identify those at risk from CAD. These include functional genomics, taking a sequence of the genome and analysing the function of individual genes and their interaction with other genes to understand the role they play in disease.

Amongst other things, the study will look at the extent to which CAD risk factors, such as insulin resistance, hypertension and obesity, can be predicted using biomarkers in the blood. Scientists have already identified biomarkers which, when found in elevated levels, indicate the presence of certain types of tumour.

In addition, Professor Gauguier hopes that the study will offer an insight into tackling other complex diseases, through therapeutic and strategic means.

"We believe the study will play a key role in identifying targets for novel therapies to tackle the disease," says Professor Gauguier. "Ultimately, we hope that the wealth of information obtained by the project and the techniques that it helps us develop will lead to significant advances for disease diagnosis and prevention."

FGENTCARD builds on previous Wellcome Trust-funded research including BAIR, the Biological Atlas of Insulin Resistance, and CFG, the Cardiovascular Functional Genomics consortium.

Craig Brierley | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>