Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Placing Eye Implants in Cats to Help Humans See

11.01.2007
In "Star Trek: The Next Generation," Geordi La Forge is a blind character who can see through the assistance of special implants in his eyes. While the Star Trek character "lives" in the 24th century, people living in the 21st century may not have to wait that long for the illuminating technology.

Kristina Narfstrom, a University of Missouri-Columbia veterinary ophthalmologist, has been working with a microchip implant to help blind animals "see." According to Narfstrom, the preliminary results are promising.

"About one in 3,500 people worldwide is affected with a hereditary disease, retinitis pigmentosa, that causes the death of retinal cells and, eventually, blindness," Narfstrom said. "Our current study is aimed at determining safety issues in regard to the implants and to further develop surgical techniques. We also are examining the protection the implants might provide to the retinal cells that are dying due to disease progression with the hope that natural sight can be maintained much longer than would be possible in an untreated patient."

Narfstrom, the Ruth M. Kraeuchi-Missouri Professor in Veterinary Ophthalmology, is working primarily with Abyssinian and Persian cats that are affected with hereditary retinal blinding disease. The cat's eye is a good model to use for this type of research because it is very similar to a human eye in size and construction, so surgeons can use the same techniques and equipment. Cats also share many of the same eye diseases with humans. The Abyssinian cats that Narfstrom is working with typically start to lose their sight when they are around one or two years old and are completely blind by age four.

To date, Narfstrom has performed surgeries in severely visually impaired or blind cats. During the surgery, Narfstrom makes two small cuts into the sclera, the outer wall of the eyeball. After removing the vitreous, which is the gelatinous fluid inside the back part of the eyeball, Narfstrom creates a small blister in the retina and a small opening, large enough for the microchip, which is just two millimeters in diameter and 23 micrometers (one-millionth of a meter) thick. The chip includes several thousand microphotodiodes that react to light and produce small electrical impulses in parts of the retina.

"We are really excited about the potential uses for this technology and the potential to create improved vision in some of the millions of people affected worldwide with retinal blindness," Narfstrom said. "This technology also may be beneficial for pets that have similar diseases because this technology can benefit both animals and humans."

Narfstrom is working with Optobionics Corporation, the Naperville, Ill., based company that developed the device, and with Machelle Pardue, a researcher with Emory University and the Research Service at the VA Medical Center in Atlanta.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>