Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researcher Placing Eye Implants in Cats to Help Humans See

In "Star Trek: The Next Generation," Geordi La Forge is a blind character who can see through the assistance of special implants in his eyes. While the Star Trek character "lives" in the 24th century, people living in the 21st century may not have to wait that long for the illuminating technology.

Kristina Narfstrom, a University of Missouri-Columbia veterinary ophthalmologist, has been working with a microchip implant to help blind animals "see." According to Narfstrom, the preliminary results are promising.

"About one in 3,500 people worldwide is affected with a hereditary disease, retinitis pigmentosa, that causes the death of retinal cells and, eventually, blindness," Narfstrom said. "Our current study is aimed at determining safety issues in regard to the implants and to further develop surgical techniques. We also are examining the protection the implants might provide to the retinal cells that are dying due to disease progression with the hope that natural sight can be maintained much longer than would be possible in an untreated patient."

Narfstrom, the Ruth M. Kraeuchi-Missouri Professor in Veterinary Ophthalmology, is working primarily with Abyssinian and Persian cats that are affected with hereditary retinal blinding disease. The cat's eye is a good model to use for this type of research because it is very similar to a human eye in size and construction, so surgeons can use the same techniques and equipment. Cats also share many of the same eye diseases with humans. The Abyssinian cats that Narfstrom is working with typically start to lose their sight when they are around one or two years old and are completely blind by age four.

To date, Narfstrom has performed surgeries in severely visually impaired or blind cats. During the surgery, Narfstrom makes two small cuts into the sclera, the outer wall of the eyeball. After removing the vitreous, which is the gelatinous fluid inside the back part of the eyeball, Narfstrom creates a small blister in the retina and a small opening, large enough for the microchip, which is just two millimeters in diameter and 23 micrometers (one-millionth of a meter) thick. The chip includes several thousand microphotodiodes that react to light and produce small electrical impulses in parts of the retina.

"We are really excited about the potential uses for this technology and the potential to create improved vision in some of the millions of people affected worldwide with retinal blindness," Narfstrom said. "This technology also may be beneficial for pets that have similar diseases because this technology can benefit both animals and humans."

Narfstrom is working with Optobionics Corporation, the Naperville, Ill., based company that developed the device, and with Machelle Pardue, a researcher with Emory University and the Research Service at the VA Medical Center in Atlanta.

Christian Basi | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>