Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ergonomic backpack lightens the load

22.12.2006
Invention could have important health applications for schoolchildren, emergency workers

MBL, WOODS HOLE, MA—An MBL (Marine Biological Laboratory) biomechanics expert has invented an ergonomic backpack that uses rubber bands to reduce the effects of heavy loads on shoulders and joints and permits wearers to run more comfortably with heavy loads.

The backpack's design, which suspends loads using bungee cords, reduces the energetic cost of carrying weight such that users can carry 12 more pounds in the suspended backpack than in a traditional backpack. The suspended backpack could reduce the risk of orthopedic and muscular injuries to children, emergency workers, and others who use backpacks to carry loads.

Lawrence C. Rome, a University of Pennsylvania biology professor and a Whitman Investigator at the MBL, where he spends his summers studying muscle in fish and frogs, and two colleagues, describe the design of and the mechanics behind the Suspended-Load Ergonomic Backpack in the December 21 issue of the journal Nature.

With traditional backpacks, the mass of the backpack, which is typically attached tightly to the body, must undergo the same vertical displacement as the hip, which moves up and down 5 to 7 centimeters during walking. As a result, the peak forces exerted on the body by the load can be twice as high when walking, and three times as high when running, as when the backpack is not moving, exerting extreme forces on the wearer's shoulders and joints.

By using stretchy bungee cords, Rome's ergonomic backpack suspends the load and allows it to stay at a nearly constant height from the ground while the wearer walks or runs. This reduces the vertical displacement of the load and the resulting dynamic forces exerted on the body by a remarkable 82 to 86 percent. The reduction in dynamic force is easily felt, says Rome, and has practical consequences. "An immediate application would be to use it in backpacks carried by schoolchildren, a well known cause of musculoskeletal injury and recognized international public health problem."

Perhaps the most remarkable aspect of the backpack is that it permits wearers to run far more comfortably with heavy loads. "Being able to move at relatively high speeds is crucial for many professions (firemen, first responders, disaster relief workers, and police) as well as in some athletic competitions and recreation," says Rome. "If you have ever tried to run with a heavy backpack, it is almost impossible because of the large shocks to your knees and ankles. What is striking about our ergonomic backpack is that one can feel the 86 percent reduction in force with each and every step."

Rome and his colleagues also found that the suspended backpack's reduction in forces exerted on the body reduced the metabolic cost of carrying a load, allowing a substantially heavier load to be carried. The lower metabolic rate allows the wearer to carry 60 pounds in the ergonomic backpack for the same energetic cost as 48 pounds in a normal backpack. "The reason for this reduction in metabolic rate is that the suspended backpack reduces the accelerative forces during the more energetically expensive phase of walking, which is when both legs are simultaneously in contact with the ground and performing mechanical work against each other," says Rome.

Rome has formed a company called Lightning Packs LLC to further develop and commercialize the backpack. He and his colleagues will be focusing on reducing the backpack's weight and making a smaller daypack version. Lightning Packs has already received funding through small business grants from the Office of Naval Research and National Institutes of Health for commercializing an electricity generating backpack, which Rome invented in 2003. It plans to apply for similar funding for development of the ergonomic backpack.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>