Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ergonomic backpack lightens the load

22.12.2006
Invention could have important health applications for schoolchildren, emergency workers

MBL, WOODS HOLE, MA—An MBL (Marine Biological Laboratory) biomechanics expert has invented an ergonomic backpack that uses rubber bands to reduce the effects of heavy loads on shoulders and joints and permits wearers to run more comfortably with heavy loads.

The backpack's design, which suspends loads using bungee cords, reduces the energetic cost of carrying weight such that users can carry 12 more pounds in the suspended backpack than in a traditional backpack. The suspended backpack could reduce the risk of orthopedic and muscular injuries to children, emergency workers, and others who use backpacks to carry loads.

Lawrence C. Rome, a University of Pennsylvania biology professor and a Whitman Investigator at the MBL, where he spends his summers studying muscle in fish and frogs, and two colleagues, describe the design of and the mechanics behind the Suspended-Load Ergonomic Backpack in the December 21 issue of the journal Nature.

With traditional backpacks, the mass of the backpack, which is typically attached tightly to the body, must undergo the same vertical displacement as the hip, which moves up and down 5 to 7 centimeters during walking. As a result, the peak forces exerted on the body by the load can be twice as high when walking, and three times as high when running, as when the backpack is not moving, exerting extreme forces on the wearer's shoulders and joints.

By using stretchy bungee cords, Rome's ergonomic backpack suspends the load and allows it to stay at a nearly constant height from the ground while the wearer walks or runs. This reduces the vertical displacement of the load and the resulting dynamic forces exerted on the body by a remarkable 82 to 86 percent. The reduction in dynamic force is easily felt, says Rome, and has practical consequences. "An immediate application would be to use it in backpacks carried by schoolchildren, a well known cause of musculoskeletal injury and recognized international public health problem."

Perhaps the most remarkable aspect of the backpack is that it permits wearers to run far more comfortably with heavy loads. "Being able to move at relatively high speeds is crucial for many professions (firemen, first responders, disaster relief workers, and police) as well as in some athletic competitions and recreation," says Rome. "If you have ever tried to run with a heavy backpack, it is almost impossible because of the large shocks to your knees and ankles. What is striking about our ergonomic backpack is that one can feel the 86 percent reduction in force with each and every step."

Rome and his colleagues also found that the suspended backpack's reduction in forces exerted on the body reduced the metabolic cost of carrying a load, allowing a substantially heavier load to be carried. The lower metabolic rate allows the wearer to carry 60 pounds in the ergonomic backpack for the same energetic cost as 48 pounds in a normal backpack. "The reason for this reduction in metabolic rate is that the suspended backpack reduces the accelerative forces during the more energetically expensive phase of walking, which is when both legs are simultaneously in contact with the ground and performing mechanical work against each other," says Rome.

Rome has formed a company called Lightning Packs LLC to further develop and commercialize the backpack. He and his colleagues will be focusing on reducing the backpack's weight and making a smaller daypack version. Lightning Packs has already received funding through small business grants from the Office of Naval Research and National Institutes of Health for commercializing an electricity generating backpack, which Rome invented in 2003. It plans to apply for similar funding for development of the ergonomic backpack.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>