Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug treatment slows macular vision loss in diabetics

18.12.2006
A drug commonly used to slow the loss of central vision has shown promise in stemming a common precursor of blindness in diabetics, which involves the same central light-sensitive area of retina, Johns Hopkins Wilmer Eye Institute scientists report.

Encouraged by the effect of ranibuzumab in people with macular degeneration, the Hopkins researchers injected the drug into the eyes of 10 people losing their sight from macular edema, one of many complications of diabetes and a first stage of diabetic retinopathy.

Over the course of several months of therapy, every patient in the preliminary Hopkins study could read at least two more lines on the standard eye chart, the researchers said. Moreover, the thickness of the patients’ maculae, the central part of the retina responsible for seeing fine details, decreased an average of 85 percent. The American Journal of Ophthalmology published the team’s findings in their December issue.

"The results are impressive," says Quan Dong Nguyen, M.D., M.Sc., an assistant professor of ophthalmology at the Wilmer Eye Institute at Johns Hopkins, "although we will not know until we begin a larger clinical trial what the long-term benefits of the drug might be."

The Hopkins group believes that ranibuzumab interferes with a protein that spurs the growth of unwanted blood vessels in the back of the eye. Vascular endothelial growth factor, or VEGF, is released when the oxygen supply in the eye is restricted by blood vessel damage related to diabetes.

In a self-preserving attempt to acquire more oxygen, the VEGF signals for the creation of new blood vessels, which almost always damage, rather than improve, vision by blocking light’s entry onto the retina.

"We’ve suspected for awhile that ranibuzumab’s ability to shut down VEGF’s signaling would do the trick because it’s highly likely that VEGF is the culprit when it comes to diabetic macular edema," says Nguyen.

More than 4 million diabetics in the United States have diabetic retinopathy and, according to the National Eye Institute, one in 12 of those experience at least some vision loss.

Macular edema, a first stage of retinopathy, occurs when, over time, excess uncontrolled blood sugar damages the tiny blood vessels in the eye, causing fluid and fat to leak onto the retina at the back of the eye. The swelling interferes with focus and blurs vision. Making matters worse, a lack of oxygen often then triggers VEGF’s production cycle.

All 10 subjects in the study had some vision loss at the start of the clinical trial, in which ranibuzumab was administered at the one, two, four and six month marks. The thickness of each patient’s macula was also measured at each point in the study using an advanced digital imaging technique.

"Within a week, several patients experienced dramatic reductions in the thickness of their maculas, and there were further improvements with each injection," says Peter Campochiaro, M.D., the Dolores and George Eccles Professor of Ophthalmology at The Johns Hopkins University School of Medicine, who is also an investigator in the study.

Ranibuzumab is marketed for treatment of neovascular macular degeneration by Genentech Inc. under the brand name of Lucentis.

Jeff Ventura | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>