Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brains can recover from alcoholic damage but patients should stop drinking as soon as possible

18.12.2006
New research reveals the brain’s capacity to regenerate: however, the sooner alcoholics abstain from drinking the more they may recover

As people embark on the festive season’s usual round of drinking they should spare a thought for the damage they are doing to their brains. In particular, new research has revealed that while the brain is able to recover from some of the damage caused by alcohol abuse, the longer alcoholics postpone sobriety the less likely their brains may be to regenerate.

The findings, published today (18 December 2006) in the online edition of the journal Brain [1], used sophisticated scanning technology and computer software to measure how brain volume, form and function changed over six to seven weeks of abstinence from alcohol in 15 alcohol dependent patients (ten men, five women).

The researchers from Germany, the UK, Switzerland and Italy measured the patients’ brain volume at the beginning of the study and again after about 38 days of sobriety, and they found that it had increased by an average of nearly two per cent during this time. In addition, levels of two chemicals, which are indicators for how well the brain’s nerve cells and nerve sheaths are constituted, rose significantly. The increase of the nerve cell marker correlated with the patients performing better in a test of attention and concentration. Only one patient seemed to continue to lose some brain volume, and this was also the patient who had been an alcoholic for the longest time.

The leader of the research, Dr Andreas Bartsch from the University of Wuerzburg, Germany, said: “The core message from this study is that, for alcoholics, abstinence pays off and enables the brain to regain some substance and to perform better. However, our research also provides evidence that the longer you drink excessively, the more you risk losing this capacity for regeneration. Therefore, alcoholics must not put off the time when they decide to seek help and stop drinking; the sooner they do it, the better.”

Dr Bartsch, who is senior neuroradiology resident and head of the structural and functional MR-imaging laboratory of the Department of Neuroradiology at the University of Wuerzburg, said the study was one of the first to be able to integrate data that showed how the brain regained volume and function early on, once alcoholics, who had no complicating factors, had stopped drinking alcohol. It was carried out in collaboration with colleagues from the University of Oxford’s Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) and from the University of Siena’s Institute of Neurological and Behavioural Sciences.

The patients’ brains were scanned using magnetic resonance imaging (MRI) and proton MR-spectroscopy upon admission and after short-term sobriety. Only the patients that managed to abstain from alcohol without receiving any psychotherapeutic medication were included in the study, and those with secondary alcohol-induced disorders, as well as heavy cigarette smokers (more than 10 cigarettes a day), were excluded. Ten healthy volunteers (six men, four women), matched for age and gender, were recruited as controls for the study. The data were analysed and evaluated using FSL, a sophisticated software package developed at the Oxford FMRIB Centre, and LCModel (a computer program that analyses spectroscopy data) to give estimates of changes to brain volume, form (morphology), metabolism and function.

The technology enabled the researchers to superimpose the images of the patients’ brains upon follow-up on to the images of the brains at the start of the study so that they could see any morphological changes. They also measured how levels of various chemicals, including N-acetylaspartate (NAA) and choline, changed between the two time points. NAA can indicate how intact the brain’s nerve cells are (i.e. it is a metabolic marker of neuronal integrity), while choline provides hints at how cell membranes are being broken down and repaired.

In addition, the neuropsychological performance of the patients was tested at the beginning and end of the study, using a specific test (the d2-test) that primarily measures attention and concentration [2].

Dr Bartsch said: “After short-term sobriety of less than two months, we found that brain volume had increased by an average of nearly two per cent (1.82%), with a range of -0.19 to 4.32%. Only the one patient with the longest history of alcohol dependence (25 years) had a slightly reduced brain volume (-0.19%), but that value is within the margin of measurement error. Volumetric brain recovery was signified by the patients’ brains expanding beyond their previous limits, with an outward brain edge shift for the outer regions and an inward shift for the inner ones.

“In addition, on average across all the patients, cerebellar choline levels increased by about 20%, while levels of NAA in the cerebellar and frontal region of the brain and frontal choline significantly increased by about 10%. Brain volume regeneration correlated with the percentages increase in choline, indicating that volume regain is driven primarily by rising choline levels, while the more the NAA recovered, the better the patients performed on the d2-test.”

There were no significant changes in the controls.

Dr Bartsch and his colleagues were confident that the increase in brain volume and form was not simply due to rehydration of the brain, as concentrations of choline and NAA increased even when water levels and other metabolites did not change significantly.

“Our results indicate that early brain recovery through abstinence does not simply reflect rehydration. Instead, the adult human brain, and particularly its white matter, seems to possess genuine capabilities for re-growth. Our findings show the ways that the brain can recover from the toxic insults of chronic alcoholism and substantiate the early measurable benefits of therapeutic sobriety. However, they also suggest that prolonged dependence on alcohol may limit rapid recovery from white matter brain injury.

“Modern neuroimaging enables us to monitor morphological, metabolic and other functional brain changes. Usually this has been applied to evaluate the degree and speed of brain degeneration in illnesses such as Alzheimer’s disease or multiple sclerosis. Here, we show that neuroimaging can also demonstrate and quantify brain regeneration in substance and function. Data analysis is crucial to these endeavours, and modern software such as the tools delivered by the Image Analysis Group at the FMRIB centre in Oxford provides us with the utilities necessary for such studies. For instance, I am able to inform a specific patient how much exactly his or her brain has benefited from sobriety and, as a clinician, I believe this may be a very supportive part of their treatment,” he concluded.

In an accompanying commentary, Professor Graeme Mason, wrote that the study was important not just because it unified several previously separate lines of research but because it might give doctors the tools to motivate their alcohol-dependent patients to stay sober.

“Doctors treating or studying alcoholism should be made aware of the research of Dr Bartsch because it may provide a motivational tool that is a broad set of concrete, tangible, and rapid benefits of sobriety: cognition, chemistry and brain volume,” wrote the associate professor of diagnostic radiology and psychiatry at Yale University. Prof Mason believed this was a particularly valuable contribution of the study because “patients often become discouraged from the physical and cognitive difficulties of achieving and maintaining sobriety”.

Dr Andreas Bartsch | alfa
Further information:
http://www.uni-wuerzburg.de
http://www.oxfordjournals.org/our_journals/brainj/press_releases/dec06.pdf

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>