Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Diabetes gene' may be linked to polycystic ovary syndrome

08.12.2006
Polycystic ovary syndrome (PCOS) occurs when ovarian cysts block a woman's normal ovulation and menstrual cycle. While the problem sounds straightforward, the disease is complex, born from both multiple genetic components and environmental factors.

PCOS affects up to five percent of the female population, and those diagnosed with the disease have a 2- to 7-fold risk of developing type 2 diabetes mellitus (T2DM). For this reason researchers believe a gene related to diabetes may also play a role in the onset of PCOS. A new study of 146 PCOS patients has found that the "diabetes gene" (calpain-10 (CAPN10)) is in fact an interesting candidate for explaining the syndrome.

A New Study

The findings are contained in a new study entitled "Calpain-10 Variants and Haplotypes are Associated with Polycystic Ovary Syndrome in Caucasians." The study was conducted by Caren Vollmert, Claudia Lamina, Cornelia Huth, Melanie Kolz, Andreas Schopfer-Wendels, Friedhelm Bongardt, Florian Kronenberg, Hannelore Lowel and Thomas Illig, all of the GSF-National Research Center for Environment and Health, Neuherberg; Susanne Hahn, Klaus Mann and Onno E. Janssen, University of Duisburg-Essen, Essen; H.-Erich Wichmann, Ludwig Maximilians University, Munich; Jakob C. Mueller, Technical University, Munich; Christian Herder, Heinrich Heine University, Dusseldorf; and Rolf Holle, GSF-National Research Center of Environment and Health, Neuherberg, Germany.

Their study appears in the online edition of the American Journal of Physiology-Endocrinology and Metabolism (http://ajpendo.physiology.org). The journal is one of the 14 scientific publications published by the American Physiological Society (APS) (www.The-APS.org) each month.

Methodology

The study comprised 752 females. Of the total, 146 were diagnosed with PCOS and 606 were unrelated non-diabetic female controls drawn from a previously conducted independent study of the German population.

Genomic DNA was taken from the PCOS group and isolated from whole blood, and genomic DNA was extracted from the blood leukocytes of the controls. Eight CAPN10 variants were genotyped: UCSNP-44, -43, -56, ins/del-19 (a fragment of gene CAPN10 UCSNP-19, which contains an insertion or deletion variation in the DNA sequence), -110, -58, -63, and -22.

The researchers extracted these eight specific single-nucleotide polymorphisms (SNPs) ¡V the small genetic variations that can occur within a person's DNA sequence because they are known to be associated with PCOS, type 2 diabetes, or related traits. Genotyping using comparative DNA analysis to determine the predisposition of individuals to certain diseases was then performed.

To estimate the genetic association of each of the eight SNPs with PCOS the differences in genotype distributions between the case and control groups were measured. The impact of the differences in age and body mass index (BMI) structures for both groups was also calculated. To better clarify the purported associations between CAPN10 and PCOS the researchers performed a meta-analysis using their own data and all available published data showing a genetic association between CAPN10 and PCOS.

Results

Highlights of the researchers' findings include the following:

- clear evidence associating the diabetes gene areas CAPN10 UCSNP-56 and UCSNP-ins/del-19 with PCOS susceptibility

- an expected association between CAPN10 UCSNP-22 and PCOS

- no significant association between CAPN10 UCSNP-44, -43, -110, -58, or -63 and PCOS susceptibility

Conclusions

This study provides additional strong support for the theory that two areas of one gene -- CAPN10 UCSNP-56 and UCSNP-ins/del-19 -- are related to PCOS susceptibility. These data also suggest that the SNP ins/del-19 may be related to both PCOS and type 2 diabetes.

The findings are good news for the estimated five percent of the female population who are diagnosed with the painful and sometimes disabling disease. At the same time, the authors recommend that additional case-control studies and meta-analysis be undertaken to better understand these findings.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>