Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton beam therapy may improve treatment of rare but aggressive tumor

22.11.2006
Focusing radiation in the affected area leads to better control of cranial-base tumor

Proton beam radiation therapy, a very precise type of radiation treatment, may be an effective treatment for advanced adenoid cystic carcinoma that has spread to the cranial base, according to a study from the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (MGH).

In the November issue of Archives of Otolaryngology – Head and Neck Surgery, the research team describes results from 11 years of using proton therapy to treat this tumor, which can be dangerous when it spreads into the complex structures at the base of the skull.

"We are very encouraged by our results, in which local tumor control of advanced adenoid cystic carcinoma of the cranial base compared very favorably with results reported from traditional radiation therapy," says Annie Chan, MD, MGH Radiation Oncology, who led the study.

Frequently originating in the salivary glands, adenoid cystic carcinoma is an indolent but aggressive tumor that is usually treated surgically if diagnosed at an early stage. However, when it originates in or spreads into the cranial base – a complex area involving the cranial nerves, the eyes and critical brain structures – it is impossible to remove the tumor safely. Traditional radiation therapy has had limited success in controlling the tumors' growth, largely because the sensitive adjacent structures sharply limit the ability to deliver a strong enough dose.

Proton therapy takes advantage of an inherent quality of the positively charged atomic particles. As they travel through tissues, protons release most of their energy in a concentrated burst near the end of their range, which allows the power of the proton beam to be focused extremely precisely and spares surrounding structures. The MGH has used proton therapy to treat a variety of benign and malignant conditions since 1961 and in 2001 opened the Burr Proton Therapy Center, at the time the second hospital-based center in the world. Currently, proton therapy is offered in 25 centers worldwide, five of which are in the U.S.

The current study reports on a group of patients with very locally advanced adenoid cystic carcinoma involving the cranial base who were treated with high-dose proton beam therapy during the years 1991 through 2002. The majority of the patients could not undergo surgery, as the tumors were very advanced and involved critical structures in the brain or the cranial base. Patients were treated with high-dose proton beam radiation therapy, with treatment plans individually designed to target their specific tumors.

With proton beam treatment, only 9 percent of patients had local recurrence of their tumors, while with traditional radiation tumors recur locally more than 70 percent of the time. With tumors controlled locally in most patients, cancer that did recur was in the form of distant metastasis. However, more than half the patients remained free of recurrence through the end of the study period, up to eight years after surgery. Although blindness is a common side effect of traditional radiation to this area, none of the patients developed blindness with the proton beam treatment.

While the results of this study – the first known report of the use of proton beam therapy to treat this tumor – are better than trials of other types of radiation treatment, the researchers note that conducting the kind of randomized trial required to confirm a treatment's superiority would be difficult for such a rare tumor. However, multi-institutional prospective studies could further study the use of proton beam therapy to treat this rare and aggressive malignancy.

"We are now investigating whether combining proton beam radiation therapy with chemotherapy could further improve the outcome for these patients," says Chan, an assistant professor of Radiation Oncology at Harvard Medical School. The study was supported by the National Institutes of Health.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>