Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton beam therapy may improve treatment of rare but aggressive tumor

22.11.2006
Focusing radiation in the affected area leads to better control of cranial-base tumor

Proton beam radiation therapy, a very precise type of radiation treatment, may be an effective treatment for advanced adenoid cystic carcinoma that has spread to the cranial base, according to a study from the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (MGH).

In the November issue of Archives of Otolaryngology – Head and Neck Surgery, the research team describes results from 11 years of using proton therapy to treat this tumor, which can be dangerous when it spreads into the complex structures at the base of the skull.

"We are very encouraged by our results, in which local tumor control of advanced adenoid cystic carcinoma of the cranial base compared very favorably with results reported from traditional radiation therapy," says Annie Chan, MD, MGH Radiation Oncology, who led the study.

Frequently originating in the salivary glands, adenoid cystic carcinoma is an indolent but aggressive tumor that is usually treated surgically if diagnosed at an early stage. However, when it originates in or spreads into the cranial base – a complex area involving the cranial nerves, the eyes and critical brain structures – it is impossible to remove the tumor safely. Traditional radiation therapy has had limited success in controlling the tumors' growth, largely because the sensitive adjacent structures sharply limit the ability to deliver a strong enough dose.

Proton therapy takes advantage of an inherent quality of the positively charged atomic particles. As they travel through tissues, protons release most of their energy in a concentrated burst near the end of their range, which allows the power of the proton beam to be focused extremely precisely and spares surrounding structures. The MGH has used proton therapy to treat a variety of benign and malignant conditions since 1961 and in 2001 opened the Burr Proton Therapy Center, at the time the second hospital-based center in the world. Currently, proton therapy is offered in 25 centers worldwide, five of which are in the U.S.

The current study reports on a group of patients with very locally advanced adenoid cystic carcinoma involving the cranial base who were treated with high-dose proton beam therapy during the years 1991 through 2002. The majority of the patients could not undergo surgery, as the tumors were very advanced and involved critical structures in the brain or the cranial base. Patients were treated with high-dose proton beam radiation therapy, with treatment plans individually designed to target their specific tumors.

With proton beam treatment, only 9 percent of patients had local recurrence of their tumors, while with traditional radiation tumors recur locally more than 70 percent of the time. With tumors controlled locally in most patients, cancer that did recur was in the form of distant metastasis. However, more than half the patients remained free of recurrence through the end of the study period, up to eight years after surgery. Although blindness is a common side effect of traditional radiation to this area, none of the patients developed blindness with the proton beam treatment.

While the results of this study – the first known report of the use of proton beam therapy to treat this tumor – are better than trials of other types of radiation treatment, the researchers note that conducting the kind of randomized trial required to confirm a treatment's superiority would be difficult for such a rare tumor. However, multi-institutional prospective studies could further study the use of proton beam therapy to treat this rare and aggressive malignancy.

"We are now investigating whether combining proton beam radiation therapy with chemotherapy could further improve the outcome for these patients," says Chan, an assistant professor of Radiation Oncology at Harvard Medical School. The study was supported by the National Institutes of Health.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>