Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research holds promise for herpes vaccine

17.10.2006
A study by a Montana State University researcher suggests a new avenue for developing a vaccine against genital herpes and other diseases caused by herpes simplex viruses.

In a study published earlier this year in the Virology Journal, MSU virologist William Halford showed that mice vaccinated with a live, genetically-modified herpes simplex virus type 1 (HSV-1) showed no signs of disease 30 days after being exposed to a particularly lethal "wild-type" strain of the virus.

In contrast, a second group of mice that received a more conventional vaccine died within six days of being exposed to the same "wild-type" strain.

"We have a clear roadmap for producing an effective live vaccine against genital herpes," said Halford, who works in MSU's Department of Veterinary Molecular Biology. "Although my studies were performed with HSV-1, the implications for HSV-2-induced genital herpes are clear. Overall the two viruses are about 99 percent genetically identical."

An estimated 55 million Americans carry herpes simplex virus type 2 (HSV-2), which causes genital herpes. Infection is life-long. Approximately 5 percent of those with genital herpes - 2 million to 3 million Americans - suffer outbreaks one to four times annually. A vaccine offering life-long protection does not exist.

The key to Halford's research was understanding how the herpes simplex virus overcame the body's natural defenses.

A cell infected with the herpes simplex virus sends a warning to neighboring cells. This warning -- an interferon response -- causes neighboring cells to enter "an anti-viral state" akin to putting on a suit of armor, Halford said.

However, herpes produces a protein, ICP0, that tricks every infected cell into destroying its own armor. Once the cell's armor is gone, the virus can propagate itself and spread to other cells, which are in turn tricked into lowering their defenses.

In his research, Halford created a vaccine where the genetic instructions that make ICP0 were disrupted. Without instructions on how to do its clever ICP0 trick, the virus can still establish an infection in animals, but the spread of the virus is stopped long before disease can occur.

"In short, we can disarm the virus such that it is absolutely unable to cause disease, but is still remarkably potent as a vaccine," Halford said.

In a human vaccine, the genetic instructions for ICP0 would actually be removed, creating an "attenuated," or weakened virus. The rest of the herpes simplex virus' genetic code would remain intact. Measles, mumps, rubella, polio and yellow fever vaccines are all made from attenuated viruses.

Research in recent decades has focused on subunit vaccines, which are made from one piece of a virus (a protein subunit). Subunit vaccines are safer than attenuated virus vaccines because the subunit cannot replicate or cause disease. However, subunit vaccines have proven ineffective in protecting people against persistent infections like genital herpes and AIDS, Halford said.

"From a theoretical standpoint, subunit vaccines are poor mimics of a natural virus infection," Halford said. "There's not enough there for our immune systems to build a protective response against the actual virus."

Halford, 38, is aware that his approach is controversial.

"This is where I'm young enough that I don't know how long it can take to swing popular opinion among scientists and clinicians," he said. "I would hope that in five to six years the scientific community would be willing to seriously consider these proposals."

Halford hopes to find a commercial partner or secure government funding to advance his research toward a human vaccine.

"I'd like to take this concept from the chalkboard to the clinics," he said.

Contact: William Halford at (406) 994-6374 or halford@montana.edu, http://vmb.montana.edu/faculty/halford/.

William Halford | EurekAlert!
Further information:
http://www.montana.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>