Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research holds promise for herpes vaccine

17.10.2006
A study by a Montana State University researcher suggests a new avenue for developing a vaccine against genital herpes and other diseases caused by herpes simplex viruses.

In a study published earlier this year in the Virology Journal, MSU virologist William Halford showed that mice vaccinated with a live, genetically-modified herpes simplex virus type 1 (HSV-1) showed no signs of disease 30 days after being exposed to a particularly lethal "wild-type" strain of the virus.

In contrast, a second group of mice that received a more conventional vaccine died within six days of being exposed to the same "wild-type" strain.

"We have a clear roadmap for producing an effective live vaccine against genital herpes," said Halford, who works in MSU's Department of Veterinary Molecular Biology. "Although my studies were performed with HSV-1, the implications for HSV-2-induced genital herpes are clear. Overall the two viruses are about 99 percent genetically identical."

An estimated 55 million Americans carry herpes simplex virus type 2 (HSV-2), which causes genital herpes. Infection is life-long. Approximately 5 percent of those with genital herpes - 2 million to 3 million Americans - suffer outbreaks one to four times annually. A vaccine offering life-long protection does not exist.

The key to Halford's research was understanding how the herpes simplex virus overcame the body's natural defenses.

A cell infected with the herpes simplex virus sends a warning to neighboring cells. This warning -- an interferon response -- causes neighboring cells to enter "an anti-viral state" akin to putting on a suit of armor, Halford said.

However, herpes produces a protein, ICP0, that tricks every infected cell into destroying its own armor. Once the cell's armor is gone, the virus can propagate itself and spread to other cells, which are in turn tricked into lowering their defenses.

In his research, Halford created a vaccine where the genetic instructions that make ICP0 were disrupted. Without instructions on how to do its clever ICP0 trick, the virus can still establish an infection in animals, but the spread of the virus is stopped long before disease can occur.

"In short, we can disarm the virus such that it is absolutely unable to cause disease, but is still remarkably potent as a vaccine," Halford said.

In a human vaccine, the genetic instructions for ICP0 would actually be removed, creating an "attenuated," or weakened virus. The rest of the herpes simplex virus' genetic code would remain intact. Measles, mumps, rubella, polio and yellow fever vaccines are all made from attenuated viruses.

Research in recent decades has focused on subunit vaccines, which are made from one piece of a virus (a protein subunit). Subunit vaccines are safer than attenuated virus vaccines because the subunit cannot replicate or cause disease. However, subunit vaccines have proven ineffective in protecting people against persistent infections like genital herpes and AIDS, Halford said.

"From a theoretical standpoint, subunit vaccines are poor mimics of a natural virus infection," Halford said. "There's not enough there for our immune systems to build a protective response against the actual virus."

Halford, 38, is aware that his approach is controversial.

"This is where I'm young enough that I don't know how long it can take to swing popular opinion among scientists and clinicians," he said. "I would hope that in five to six years the scientific community would be willing to seriously consider these proposals."

Halford hopes to find a commercial partner or secure government funding to advance his research toward a human vaccine.

"I'd like to take this concept from the chalkboard to the clinics," he said.

Contact: William Halford at (406) 994-6374 or halford@montana.edu, http://vmb.montana.edu/faculty/halford/.

William Halford | EurekAlert!
Further information:
http://www.montana.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>