Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research holds promise for herpes vaccine

A study by a Montana State University researcher suggests a new avenue for developing a vaccine against genital herpes and other diseases caused by herpes simplex viruses.

In a study published earlier this year in the Virology Journal, MSU virologist William Halford showed that mice vaccinated with a live, genetically-modified herpes simplex virus type 1 (HSV-1) showed no signs of disease 30 days after being exposed to a particularly lethal "wild-type" strain of the virus.

In contrast, a second group of mice that received a more conventional vaccine died within six days of being exposed to the same "wild-type" strain.

"We have a clear roadmap for producing an effective live vaccine against genital herpes," said Halford, who works in MSU's Department of Veterinary Molecular Biology. "Although my studies were performed with HSV-1, the implications for HSV-2-induced genital herpes are clear. Overall the two viruses are about 99 percent genetically identical."

An estimated 55 million Americans carry herpes simplex virus type 2 (HSV-2), which causes genital herpes. Infection is life-long. Approximately 5 percent of those with genital herpes - 2 million to 3 million Americans - suffer outbreaks one to four times annually. A vaccine offering life-long protection does not exist.

The key to Halford's research was understanding how the herpes simplex virus overcame the body's natural defenses.

A cell infected with the herpes simplex virus sends a warning to neighboring cells. This warning -- an interferon response -- causes neighboring cells to enter "an anti-viral state" akin to putting on a suit of armor, Halford said.

However, herpes produces a protein, ICP0, that tricks every infected cell into destroying its own armor. Once the cell's armor is gone, the virus can propagate itself and spread to other cells, which are in turn tricked into lowering their defenses.

In his research, Halford created a vaccine where the genetic instructions that make ICP0 were disrupted. Without instructions on how to do its clever ICP0 trick, the virus can still establish an infection in animals, but the spread of the virus is stopped long before disease can occur.

"In short, we can disarm the virus such that it is absolutely unable to cause disease, but is still remarkably potent as a vaccine," Halford said.

In a human vaccine, the genetic instructions for ICP0 would actually be removed, creating an "attenuated," or weakened virus. The rest of the herpes simplex virus' genetic code would remain intact. Measles, mumps, rubella, polio and yellow fever vaccines are all made from attenuated viruses.

Research in recent decades has focused on subunit vaccines, which are made from one piece of a virus (a protein subunit). Subunit vaccines are safer than attenuated virus vaccines because the subunit cannot replicate or cause disease. However, subunit vaccines have proven ineffective in protecting people against persistent infections like genital herpes and AIDS, Halford said.

"From a theoretical standpoint, subunit vaccines are poor mimics of a natural virus infection," Halford said. "There's not enough there for our immune systems to build a protective response against the actual virus."

Halford, 38, is aware that his approach is controversial.

"This is where I'm young enough that I don't know how long it can take to swing popular opinion among scientists and clinicians," he said. "I would hope that in five to six years the scientific community would be willing to seriously consider these proposals."

Halford hopes to find a commercial partner or secure government funding to advance his research toward a human vaccine.

"I'd like to take this concept from the chalkboard to the clinics," he said.

Contact: William Halford at (406) 994-6374 or,

William Halford | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>