Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke researchers find physician resistance hinders diabetics use of cutting edge technology

17.10.2006
Diabetic patients who use newer technologies such as insulin pumps and blood glucose monitoring devices are better able to manage their disease and adhere to treatment regimens, with less daily pain, than with conventional treatments, according to Duke University researchers.

Yet researchers have found that the newer methods to manage diabetes are not being widely used because physicians may be reluctant to prescribe them, and even patients who are using them may not be deriving their full benefits.

According to the Duke researchers, the lack of strong scientific evidence on the efficacy of newer devices, combined with insufficient patient-education resources for physicians and their patients, hinders the diffusion of new devices and contributes to their incorrect use. In addition, the researchers pointed to the higher costs of newer medical technologies and the demographics of diabetes as probable causes of low usage – i.e., its disproportionate prevalence among racial and ethnic minorities, persons of low socioeconomic status, and the elderly.

These findings have emerged from a literature review conducted by the Medical Technology Assessment Working Group at Duke University, focusing on technologies used to monitor glucose and deliver insulin outside of conventional methods, such as daily injections and finger stick tests.

Diabetes is a serious and costly disease whose prevalence is expected to increase by 165 percent between 2000 and 2050. In 2002, the total cost of diabetes in the U.S. was $132 billion, $92 billion in direct medical costs and $40 billion in indirect costs representing disability, inability to work and premature death.

Empirical evidence, the researchers say, is sufficient to conclude that new devices for delivering insulin and monitoring blood glucose, when applied correctly and consistently, are less painful and provide a more specific and continuous level of dosing and feedback. As a result, patients benefit from improved quality of life and decreased risk of developing a serious diabetes-related medical condition such as hypertension, blindness and end-stage renal disease.

According to Linda K. George, Ph.D., professor and project director of the study, for all of its risks and complications, diabetes is largely controllable, especially type 2 diabetes, which accounts for 90-95 percent of cases. "It's clear that the rate of diffusion of cutting-edge technologies for diabetics is sluggish. We haven't systematically investigated why, but it appears that the bottleneck to widespread use of new technologies is resistance from physicians rather than patients."

Dr. George pointed to several possible reasons to account for physician resistance. For example, lacking clinical evidence of the long-term benefits of new devices, physicians may not be confident that they are more effective and cost-efficient compared with traditional treatments. The disease's demographic prevalence among minorities, the elderly and people of low socioeconomic status, is a major contributor to low use rates. Across a range of diseases, these populations are historically less likely to be prescribed cutting-edge medical technologies for treatment, she said.

Further, physicians' own lack of experience in selecting the devices and teaching patients to use them could hinder utilization, which may also explain why patients' who use new devices often do not derive their full benefit, Dr. George said. While new devices require a degree of patient education, researchers say there is no evidence to suggest that the skill set required is more or less complicated than for conventional methods. The study points to the need for new patient education and monitoring techniques to ensure that patients use devices properly, e.g., using the feedback from the glucose monitor to adjust insulin delivery and/or relevant behavior, or to maintain the necessary level of insulin in the pump.

Duke researchers also examined emerging innovations in minimally- and non-invasive methods of glucose monitoring and insulin delivery, indicating that continuous glucose sensor (CGS) technology has the potential to revolutionize diabetes management because it provides real-time feedback about glucose levels, and the rate and direction (high-low) of changes.

According to Dr. George, inhaled insulin (via nasal spray or inhaler) in powder or aerosol form, will surpass all previous methods of insulin delivery in terms of pain and convenience. This method has the potential to deliver insulin in one long-acting dose per day and provide a closer match to the body's natural production of insulin.

"Compared to most chronic diseases, diabetes is unusually burdensome. It also holds exceptional promise for effective management and control," said InHealth Executive Director, Martyn Howgill. "There is clear evidence that tight blood glucose control can prevent or delay complications and increase quality of life for diabetics. Ultimately, patients need access to the best technology which provides the highest patient satisfaction and the least pain and inconvenience."

The literature review is part of larger study funded by a grant from The Institute for Health Technology Studies (InHealth), to examine the effects of medical technology on patients, particularly those who have completed treatment or received care, across a range of diseases and conditions. In addition to diabetes, the Duke team is researching medical technology impact on treatment for cardiovascular disease and stroke, sensory impairments (hearing and vision loss), musculosketal diseases, and neoplastic diseases (cancer).

Robyn Stein | EurekAlert!
Further information:
http://www.inhealth.org

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>