Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-energy clamp simplifies heart surgery for atrial fibrillation

12.10.2006
Heart surgeons at Washington University School of Medicine in St. Louis have helped usher in a new era in the surgical treatment of atrial fibrillation. Using radiofrequency devices -- rather than a scalpel -- they've greatly shortened the surgery and made it significantly easier to perform.

"Because of the devices, the procedure -- called the Cox-Maze procedure -- has gone from an operation that hardly anyone was doing to one that 80 to 90 percent of U.S. heart surgeons are now performing," says Ralph J. Damiano Jr., M.D., the John Shoenberg Professor of Surgery and chief of cardiac surgery at the School of Medicine and a cardiac surgeon at Barnes-Jewish Hospital.

Adults older than 40 have a 25 percent risk of eventually developing atrial fibrillation in which the upper chambers of the heart twitch rapidly instead of contracting fully and regularly. The condition can lead to stroke or heart failure.

For some patients, medications can control the abnormal heart rhythms and the risk of clotting associated with atrial fibrillation, but they do not cure the disorder. The Cox-Maze procedure has a greater than 90 percent cure rate.

Damiano and his colleagues have played a vital role in the development and testing of radiofrequency devices for treating atrial fibrillation. The devices deliver high-energy radiofrequency waves to heart tissue and very quickly create scars or ablations, which replace most of the complex incisions required by the Cox-Maze procedure. The ablations disrupt the atria's abnormal electrical activity and normalize heart rhythm.

The research team found that surgeons needed to apply the devices for only a few seconds at a time to get effective ablation of the atrial wall, and the devices caused no injury to surrounding tissue. The time needed for the procedure went from more than 90 minutes to about 30 minutes.

The modified Cox-Maze procedure eliminated atrial fibrillation in over 90 percent of patients in a recent study, a number that compares favorably to the outcomes of the traditional cut-and-sew procedure. About three-quarters of patients treated no longer need drugs to prevent abnormal heart rhythms or excessive blood clotting, Damiano says.

The Cox-Maze procedure is named for James Cox, M.D., former director of Washington University's division of cardiothoracic surgery, who led the St. Louis research group that developed the procedure in 1987. The procedure -- which revolutionized treatment of atrial fibrillation -- calls for ten precisely placed incisions in the upper chambers of the heart. The incisions are then sewn up and eventually form scars in the atrial tissue.

The scar tissue stops atrial fibrillation by interfering with chaotic electrical signals that cause the atria to contract irregularly. By placing roadblocks in the way of these misplaced electrical impulses, the Cox-Maze procedure redirects them down their normal route so that they stimulate regular heartbeats.

The clamp-like jaws of the radiofrequency ablation devices latch onto a section of heart muscle and deliver a thin, focused line of energy that heats and ablates the tissue. Ablation with the devices can replace all but two small incisions that would typically be made during a traditional Cox-Maze procedure.

"We've not only reduced the time needed for the procedure, we've made the procedure easier to perform," Damiano says. "In addition to eliminating most of the incisions, the radiofrequency ablation clamp removes the potential for error by monitoring when the lesion goes all the way through the tissue and automatically shutting the power off at that point."

By simplifying the Cox-Maze surgery, the method will make the procedure available to more patients. "This has made it possible to offer this curative operation to almost everyone coming for heart surgery who has chronic atrial fibrillation," Damiano says.

Other devices exist to create the Cox-Maze lesions -- these use microwaves, lasers, ultrasound or freezing. Damiano believes that the type of device used at the School of Medicine is superior because other types of devices may not be as consistent or as fast and can cause collateral damage to other areas of the heart.

Damiano and colleagues are now working to develop a device that will make the Cox-Maze procedure even less invasive. The device would allow surgeons to perform the procedure on the beating heart and do away with the need to stop the heart and place the patient on a heart-lung machine. Heart-lung machines can introduce the potential for stroke or organ failure with extended use.

"We've made the first big step: we've taken a very complicated operation and made it simpler. We've tremendously decreased morbidity and virtually eliminated mortality," Damiano says. "Now we are aggressively working on a device that would allow us to do the full set of Cox-Maze lesions without using a heart-lung machine."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>