Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-energy clamp simplifies heart surgery for atrial fibrillation

Heart surgeons at Washington University School of Medicine in St. Louis have helped usher in a new era in the surgical treatment of atrial fibrillation. Using radiofrequency devices -- rather than a scalpel -- they've greatly shortened the surgery and made it significantly easier to perform.

"Because of the devices, the procedure -- called the Cox-Maze procedure -- has gone from an operation that hardly anyone was doing to one that 80 to 90 percent of U.S. heart surgeons are now performing," says Ralph J. Damiano Jr., M.D., the John Shoenberg Professor of Surgery and chief of cardiac surgery at the School of Medicine and a cardiac surgeon at Barnes-Jewish Hospital.

Adults older than 40 have a 25 percent risk of eventually developing atrial fibrillation in which the upper chambers of the heart twitch rapidly instead of contracting fully and regularly. The condition can lead to stroke or heart failure.

For some patients, medications can control the abnormal heart rhythms and the risk of clotting associated with atrial fibrillation, but they do not cure the disorder. The Cox-Maze procedure has a greater than 90 percent cure rate.

Damiano and his colleagues have played a vital role in the development and testing of radiofrequency devices for treating atrial fibrillation. The devices deliver high-energy radiofrequency waves to heart tissue and very quickly create scars or ablations, which replace most of the complex incisions required by the Cox-Maze procedure. The ablations disrupt the atria's abnormal electrical activity and normalize heart rhythm.

The research team found that surgeons needed to apply the devices for only a few seconds at a time to get effective ablation of the atrial wall, and the devices caused no injury to surrounding tissue. The time needed for the procedure went from more than 90 minutes to about 30 minutes.

The modified Cox-Maze procedure eliminated atrial fibrillation in over 90 percent of patients in a recent study, a number that compares favorably to the outcomes of the traditional cut-and-sew procedure. About three-quarters of patients treated no longer need drugs to prevent abnormal heart rhythms or excessive blood clotting, Damiano says.

The Cox-Maze procedure is named for James Cox, M.D., former director of Washington University's division of cardiothoracic surgery, who led the St. Louis research group that developed the procedure in 1987. The procedure -- which revolutionized treatment of atrial fibrillation -- calls for ten precisely placed incisions in the upper chambers of the heart. The incisions are then sewn up and eventually form scars in the atrial tissue.

The scar tissue stops atrial fibrillation by interfering with chaotic electrical signals that cause the atria to contract irregularly. By placing roadblocks in the way of these misplaced electrical impulses, the Cox-Maze procedure redirects them down their normal route so that they stimulate regular heartbeats.

The clamp-like jaws of the radiofrequency ablation devices latch onto a section of heart muscle and deliver a thin, focused line of energy that heats and ablates the tissue. Ablation with the devices can replace all but two small incisions that would typically be made during a traditional Cox-Maze procedure.

"We've not only reduced the time needed for the procedure, we've made the procedure easier to perform," Damiano says. "In addition to eliminating most of the incisions, the radiofrequency ablation clamp removes the potential for error by monitoring when the lesion goes all the way through the tissue and automatically shutting the power off at that point."

By simplifying the Cox-Maze surgery, the method will make the procedure available to more patients. "This has made it possible to offer this curative operation to almost everyone coming for heart surgery who has chronic atrial fibrillation," Damiano says.

Other devices exist to create the Cox-Maze lesions -- these use microwaves, lasers, ultrasound or freezing. Damiano believes that the type of device used at the School of Medicine is superior because other types of devices may not be as consistent or as fast and can cause collateral damage to other areas of the heart.

Damiano and colleagues are now working to develop a device that will make the Cox-Maze procedure even less invasive. The device would allow surgeons to perform the procedure on the beating heart and do away with the need to stop the heart and place the patient on a heart-lung machine. Heart-lung machines can introduce the potential for stroke or organ failure with extended use.

"We've made the first big step: we've taken a very complicated operation and made it simpler. We've tremendously decreased morbidity and virtually eliminated mortality," Damiano says. "Now we are aggressively working on a device that would allow us to do the full set of Cox-Maze lesions without using a heart-lung machine."

Gwen Ericson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>