Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-energy clamp simplifies heart surgery for atrial fibrillation

12.10.2006
Heart surgeons at Washington University School of Medicine in St. Louis have helped usher in a new era in the surgical treatment of atrial fibrillation. Using radiofrequency devices -- rather than a scalpel -- they've greatly shortened the surgery and made it significantly easier to perform.

"Because of the devices, the procedure -- called the Cox-Maze procedure -- has gone from an operation that hardly anyone was doing to one that 80 to 90 percent of U.S. heart surgeons are now performing," says Ralph J. Damiano Jr., M.D., the John Shoenberg Professor of Surgery and chief of cardiac surgery at the School of Medicine and a cardiac surgeon at Barnes-Jewish Hospital.

Adults older than 40 have a 25 percent risk of eventually developing atrial fibrillation in which the upper chambers of the heart twitch rapidly instead of contracting fully and regularly. The condition can lead to stroke or heart failure.

For some patients, medications can control the abnormal heart rhythms and the risk of clotting associated with atrial fibrillation, but they do not cure the disorder. The Cox-Maze procedure has a greater than 90 percent cure rate.

Damiano and his colleagues have played a vital role in the development and testing of radiofrequency devices for treating atrial fibrillation. The devices deliver high-energy radiofrequency waves to heart tissue and very quickly create scars or ablations, which replace most of the complex incisions required by the Cox-Maze procedure. The ablations disrupt the atria's abnormal electrical activity and normalize heart rhythm.

The research team found that surgeons needed to apply the devices for only a few seconds at a time to get effective ablation of the atrial wall, and the devices caused no injury to surrounding tissue. The time needed for the procedure went from more than 90 minutes to about 30 minutes.

The modified Cox-Maze procedure eliminated atrial fibrillation in over 90 percent of patients in a recent study, a number that compares favorably to the outcomes of the traditional cut-and-sew procedure. About three-quarters of patients treated no longer need drugs to prevent abnormal heart rhythms or excessive blood clotting, Damiano says.

The Cox-Maze procedure is named for James Cox, M.D., former director of Washington University's division of cardiothoracic surgery, who led the St. Louis research group that developed the procedure in 1987. The procedure -- which revolutionized treatment of atrial fibrillation -- calls for ten precisely placed incisions in the upper chambers of the heart. The incisions are then sewn up and eventually form scars in the atrial tissue.

The scar tissue stops atrial fibrillation by interfering with chaotic electrical signals that cause the atria to contract irregularly. By placing roadblocks in the way of these misplaced electrical impulses, the Cox-Maze procedure redirects them down their normal route so that they stimulate regular heartbeats.

The clamp-like jaws of the radiofrequency ablation devices latch onto a section of heart muscle and deliver a thin, focused line of energy that heats and ablates the tissue. Ablation with the devices can replace all but two small incisions that would typically be made during a traditional Cox-Maze procedure.

"We've not only reduced the time needed for the procedure, we've made the procedure easier to perform," Damiano says. "In addition to eliminating most of the incisions, the radiofrequency ablation clamp removes the potential for error by monitoring when the lesion goes all the way through the tissue and automatically shutting the power off at that point."

By simplifying the Cox-Maze surgery, the method will make the procedure available to more patients. "This has made it possible to offer this curative operation to almost everyone coming for heart surgery who has chronic atrial fibrillation," Damiano says.

Other devices exist to create the Cox-Maze lesions -- these use microwaves, lasers, ultrasound or freezing. Damiano believes that the type of device used at the School of Medicine is superior because other types of devices may not be as consistent or as fast and can cause collateral damage to other areas of the heart.

Damiano and colleagues are now working to develop a device that will make the Cox-Maze procedure even less invasive. The device would allow surgeons to perform the procedure on the beating heart and do away with the need to stop the heart and place the patient on a heart-lung machine. Heart-lung machines can introduce the potential for stroke or organ failure with extended use.

"We've made the first big step: we've taken a very complicated operation and made it simpler. We've tremendously decreased morbidity and virtually eliminated mortality," Damiano says. "Now we are aggressively working on a device that would allow us to do the full set of Cox-Maze lesions without using a heart-lung machine."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>