Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer suntans through science

28.09.2006
Safer than sun, more natural looking than sunless tanners: Topical treatment may be the next advance in tanning

An organic compound that creates a realistic beachy glow while inducing a natural sun block effect in your skin may be just around the corner, as scientists at the University of Kentucky are testing a treatment that enhances melanin production in animal models.

"We are in the process of evaluating forskolin, a derivative of the plant Pletranthus barbatus, for safety when applied to the skin. We know it stimulates melanin, but we need to know that it does so without adverse effect. So far, results are promising," said Dr. John D'Orazio of the UK Department of Pediatrics,the Markey Cancer Center and the Graduate Center for Toxicology.

Many people use sunless tanning products to achieve a tan look without risking the UV damage that causes skin cancer and wrinkles. However, sunless tanners currently on the market use a chemical that dyes skin a brown or orange shade. With no sun protection, skin remains vulnerable to burns and damage. Some people become frustrated with the tricky application of sunless tanners (as anyone who has ever left the house with orange knees and elbows can attest) and either give up entirely, or turn to the sun and tanning beds. Getting a tan either by sitting out in the sun or in a tanning bed currently comes with the bad side effects of ultraviolet radiation, namely sun spots, skin thickening and skin cancer. This new approach uses a lotion that fools the skin into thinking it has been out in the sun (causing natural tanning to happen) without the bad side effects of UV light.

Even those who do not desire a tanned look and use copious amounts of sun block may be at risk of skin cancer, as sun blocks require constant re-application, fade as they are exposed to sunlight, and often protect only against UVB rays, not the UVA rays blamed for some skin cancers and photo-aging of skin.

People with more melanin in their skin have darker skin that is naturally more resistant to sun damage because the melanin which is actually part of the epidermis acts as a wonderful natural sunscreen against all kinds of UV radiation. The compound being tested at the University of Kentucky actually stimulates skin to produce more of its own melanin.

The result is not only a biologically authentic, natural-looking tan, but also increased protection from the sun. Although all of the work thus far has been done in an animal model of "humanized skin", D'Orazio and his team showed that the skin of a pale individual can be made to mimic the sun-resistant skin of another with a naturally darker complexion. Effects are temporary and last only as long as the lotion is applied, so people could build up their melanin production in advance of prolonged sun exposure such as a trip to the beach. Researchers are touting this approach as a novel way to protect individuals from cancer-causing sun damage.

"What is exciting to us as scientists and physicians is the possibility of reducing skin cancer by making skin more impervious to UV damage. The cosmetic effect does have a lot of people excited and that's great too. If this keeps even one person from going to a tanning bed and increasing their risk for skin cancer, then it will serve its purpose," said D'Orazio.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/OPBPA/Top20.html

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>