Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer suntans through science

28.09.2006
Safer than sun, more natural looking than sunless tanners: Topical treatment may be the next advance in tanning

An organic compound that creates a realistic beachy glow while inducing a natural sun block effect in your skin may be just around the corner, as scientists at the University of Kentucky are testing a treatment that enhances melanin production in animal models.

"We are in the process of evaluating forskolin, a derivative of the plant Pletranthus barbatus, for safety when applied to the skin. We know it stimulates melanin, but we need to know that it does so without adverse effect. So far, results are promising," said Dr. John D'Orazio of the UK Department of Pediatrics,the Markey Cancer Center and the Graduate Center for Toxicology.

Many people use sunless tanning products to achieve a tan look without risking the UV damage that causes skin cancer and wrinkles. However, sunless tanners currently on the market use a chemical that dyes skin a brown or orange shade. With no sun protection, skin remains vulnerable to burns and damage. Some people become frustrated with the tricky application of sunless tanners (as anyone who has ever left the house with orange knees and elbows can attest) and either give up entirely, or turn to the sun and tanning beds. Getting a tan either by sitting out in the sun or in a tanning bed currently comes with the bad side effects of ultraviolet radiation, namely sun spots, skin thickening and skin cancer. This new approach uses a lotion that fools the skin into thinking it has been out in the sun (causing natural tanning to happen) without the bad side effects of UV light.

Even those who do not desire a tanned look and use copious amounts of sun block may be at risk of skin cancer, as sun blocks require constant re-application, fade as they are exposed to sunlight, and often protect only against UVB rays, not the UVA rays blamed for some skin cancers and photo-aging of skin.

People with more melanin in their skin have darker skin that is naturally more resistant to sun damage because the melanin which is actually part of the epidermis acts as a wonderful natural sunscreen against all kinds of UV radiation. The compound being tested at the University of Kentucky actually stimulates skin to produce more of its own melanin.

The result is not only a biologically authentic, natural-looking tan, but also increased protection from the sun. Although all of the work thus far has been done in an animal model of "humanized skin", D'Orazio and his team showed that the skin of a pale individual can be made to mimic the sun-resistant skin of another with a naturally darker complexion. Effects are temporary and last only as long as the lotion is applied, so people could build up their melanin production in advance of prolonged sun exposure such as a trip to the beach. Researchers are touting this approach as a novel way to protect individuals from cancer-causing sun damage.

"What is exciting to us as scientists and physicians is the possibility of reducing skin cancer by making skin more impervious to UV damage. The cosmetic effect does have a lot of people excited and that's great too. If this keeps even one person from going to a tanning bed and increasing their risk for skin cancer, then it will serve its purpose," said D'Orazio.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu
http://www.uky.edu/OPBPA/Top20.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>